287
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases.

          Author Summary

          Influenza A viruses are contagious pathogens that cause an infection of the respiratory tract in humans, commonly referred to as flu. Each year seasonal epidemics occur with three to five million cases of severe illness and occasionally new strains can create pandemics like the 1918 Spanish Flu with a high mortality among infected individuals. Currently, there are only two classes of antivirals licensed for influenza treatment. Moreover, these compounds start to lose their effectiveness as drug-resistant strains emerge frequently. Here, we use a computational model of infection to reveal the steps of virus replication that are most susceptible to interference by drugs. Our analysis suggests that the enzyme which replicates the viral genetic code, and the processes involved in virus assembly and release are promising targets for new antivirals. We also highlight that some drugs can change the dynamics of virus replication toward a later but more sustained production. Thus, we demonstrate that modeling studies can be a tremendous asset to the development of antiviral drugs and treatment strategies.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          1918 Influenza: the Mother of All Pandemics

          The "Spanish" influenza pandemic of 1918–1919, which caused ≈50 million deaths worldwide, remains an ominous warning to public health. Many questions about its origins, its unusual epidemiologic features, and the basis of its pathogenicity remain unanswered. The public health implications of the pandemic therefore remain in doubt even as we now grapple with the feared emergence of a pandemic caused by H5N1 or other virus. However, new information about the 1918 virus is emerging, for example, sequencing of the entire genome from archival autopsy tissues. But, the viral genome alone is unlikely to provide answers to some critical questions. Understanding the 1918 pandemic and its implications for future pandemics requires careful experimentation and in-depth historical analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of action of T-705 against influenza virus.

            T-705, a substituted pyrazine compound, has been found to exhibit potent anti-influenza virus activity in vitro and in vivo. In a time-of-addition study, it was indicated that T-705 targeted an early to middle stage of the viral replication cycle but had no effect on the adsorption or release stage. The anti-influenza virus activity of T-705 was attenuated by addition of purines and purine nucleosides, including adenosine, guanosine, inosine, and hypoxanthine, whereas pyrimidines did not affect its activity. T-705-4-ribofuranosyl-5'-triphosphate (T-705RTP) and T-705-4-ribofuranosyl-5'-monophosphate (T-705RMP) were detected in MDCK cells treated with T-705. T-705RTP inhibited influenza virus RNA polymerase activity in a dose-dependent and a GTP-competitive manner. Unlike ribavirin, T-705 did not have an influence on cellular DNA or RNA synthesis. Inhibition of cellular IMP dehydrogenase by T-705RMP was about 150-fold weaker than that by ribavirin monophosphate, indicating the specificity of the anti-influenza virus activity and lower level of cytotoxicity of T-705. These results suggest that T-705RTP, which is generated in infected cells, may function as a specific inhibitor of influenza virus RNA polymerase and contributes to the selective anti-influenza virus activity of T-705.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology.

              We present a Systems Biology Toolbox for the widely used general purpose mathematical software MATLAB. The toolbox offers systems biologists an open and extensible environment, in which to explore ideas, prototype and share new algorithms, and build applications for the analysis and simulation of biological and biochemical systems. Additionally it is well suited for educational purposes. The toolbox supports the Systems Biology Markup Language (SBML) by providing an interface for import and export of SBML models. In this way the toolbox connects nicely to other SBML-enabled modelling packages. Models are represented in an internal model format and can be described either by entering ordinary differential equations or, more intuitively, by entering biochemical reaction equations. The toolbox contains a large number of analysis methods, such as deterministic and stochastic simulation, parameter estimation, network identification, parameter sensitivity analysis and bifurcation analysis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                November 2013
                November 2013
                21 November 2013
                : 9
                : 11
                : e1003372
                Affiliations
                [1 ]Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
                [2 ]Institute for Analysis and Numerics, Otto von Guericke University, Magdeburg, Germany
                [3 ]Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
                Duke University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FSH TF UR. Performed the experiments: AP BP. Analyzed the data: FSH TF. Contributed reagents/materials/analysis tools: RG. Wrote the paper: FSH.

                Article
                PCOMPBIOL-D-13-01243
                10.1371/journal.pcbi.1003372
                3836700
                24278009
                e61870c7-9b81-4b4a-87c7-a486ebb44202
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 July 2013
                : 15 October 2013
                Page count
                Pages: 13
                Funding
                The authors received no specific funding for this work.
                Categories
                Research Article

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article