Blog
About

12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPAR  agonist

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lysophosphatidic acid (LPA) is a pluripotent lipid mediator acting through plasma membrane-associated LPA(x) receptors that transduce many, but not all, of its effects. We identify peroxisome proliferator-activated receptor gamma (PPARgamma) as an intracellular receptor for LPA. The transcription factor PPARgamma is activated by several lipid ligands, but agonists derived from physiologic signaling pathways are unknown. We show that LPA, but not its precursor phosphatidic acid, displaces the drug rosiglitazone from the ligand-binding pocket of PPARgamma. LPA and novel LPA analogs we made stimulated expression of a PPAR-responsive element reporter and the endogenous PPARgamma-controlled gene CD36, and induced monocyte lipid accumulation from oxidized low-density lipoprotein via the CD36 scavenger receptor. The synthetic LPA analogs were effective PPARgamma agonists, but were poor ones for LPA(1), LPA(2), or LPA(3) receptor transfected cells. Transfection studies in yeast, which lack nuclear hormone and LPA(x) receptors, show that LPA directly activates PPARgamma. A major growth factor of serum is LPA generated by thrombin-activated platelets, and media from activated platelets stimulated PPARgamma function in transfected RAW264.7 macrophages. This function was suppressed by ectopic LPA-acyltransferase expression. LPA is a physiologic PPARgamma ligand, placing PPARgamma in a signaling pathway, and PPARgamma is the first intracellular receptor identified for LPA. Moreover, LPA produced by stimulated plasma platelets activates PPARgamma in nucleated cells.

          Related collections

          Most cited references 42

          • Record: found
          • Abstract: found
          • Article: not found

          Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma.

          The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a ligand-dependent transcription factor that is important in adipocyte differentiation and glucose homeostasis and which depends on interactions with co-activators, including steroid receptor co-activating factor-1 (SRC-1). Here we present the X-ray crystal structure of the human apo-PPAR-gamma ligand-binding domain (LBD), at 2.2 A resolution; this structure reveals a large binding pocket, which may explain the diversity of ligands for PPAR-gamma. We also describe the ternary complex containing the PPAR-gamma LBD, the antidiabetic ligand rosiglitazone (BRL49653), and 88 amino acids of human SRC-1 at 2.3 A resolution. Glutamate and lysine residues that are highly conserved in LBDs of nuclear receptors form a 'charge clamp' that contacts backbone atoms of the LXXLL helices of SRC-1. These results, together with the observation that two consecutive LXXLL motifs of SRC-1 make identical contacts with both subunits of a PPAR-gamma homodimer, suggest a general mechanism for the assembly of nuclear receptors with co-activators.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            PPARgamma : a nuclear regulator of metabolism, differentiation, and cell growth.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular recognition of fatty acids by peroxisome proliferator-activated receptors.

              The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors for fatty acids (FAs) that regulate glucose and lipid homeostasis. We report the crystal structure of the PPAR delta ligand-binding domain (LBD) bound to either the FA eicosapentaenoic acid (EPA) or the synthetic fibrate GW2433. The carboxylic acids of EPA and GW2433 interact directly with the activation function 2 (AF-2) helix. The hydrophobic tail of EPA adopts two distinct conformations within the large hydrophobic cavity. GW2433 occupies essentially the same space as EPA bound in both conformations. These structures provide molecular insight into the propensity for PPARs to interact with a variety of synthetic and natural compounds, including FAs that vary in both chain length and degree of saturation.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                January 07 2003
                December 26 2002
                January 07 2003
                : 100
                : 1
                : 131-136
                Article
                10.1073/pnas.0135855100
                140905
                12502787
                © 2003
                Product

                Comments

                Comment on this article