13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Micromotors with Step-Motor Characteristics by Controlled Magnetic Interactions among Assembled Components

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, we investigated the control of the rotation dynamics of an innovative type of rotary micromotors with desired performances by tuning the magnetic interactions among the assembled micro/nanoscale components. The micromotors are made of metallic nanowires as rotors, patterned magnetic nanodisks as bearings and actuated by external electric fields. The magnetic forces for anchoring the rotors on the bearings play an essential role in the rotation dynamics of the micromotors. By varying the moment, orientation, and dimension of the magnetic components, distinct rotation behaviors can be observed, including repeatable wobbling and rolling in addition to rotation. We understood the rotation behaviors by analytical modeling, designed and realized micromotors with step-motor characteristics. The outcome of this research could inspire the development of high-performance nanomachines assembled from synthetic nanoentities, relevant to nanorobotics, microfluidics, and biomedical research.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          A logic-gated nanorobot for targeted transport of molecular payloads.

          We describe an autonomous DNA nanorobot capable of transporting molecular payloads to cells, sensing cell surface inputs for conditional, triggered activation, and reconfiguring its structure for payload delivery. The device can be loaded with a variety of materials in a highly organized fashion and is controlled by an aptamer-encoded logic gate, enabling it to respond to a wide array of cues. We implemented several different logical AND gates and demonstrate their efficacy in selective regulation of nanorobot function. As a proof of principle, nanorobots loaded with combinations of antibody fragments were used in two different types of cell-signaling stimulation in tissue culture. Our prototype could inspire new designs with different selectivities and biologically active payloads for cell-targeting tasks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rotational actuators based on carbon nanotubes.

            Nanostructures are of great interest not only for their basic scientific richness, but also because they have the potential to revolutionize critical technologies. The miniaturization of electronic devices over the past century has profoundly affected human communication, computation, manufacturing and transportation systems. True molecular-scale electronic devices are now emerging that set the stage for future integrated nanoelectronics. Recently, there have been dramatic parallel advances in the miniaturization of mechanical and electromechanical devices. Commercial microelectromechanical systems now reach the submillimetre to micrometre size scale, and there is intense interest in the creation of next-generation synthetic nanometre-scale electromechanical systems. We report on the construction and successful operation of a fully synthetic nanoscale electromechanical actuator incorporating a rotatable metal plate, with a multi-walled carbon nanotube serving as the key motion-enabling element.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications.

              Scanning probe microscopies (SPM) and cantilever-based sensors generally use low-frequency mechanical devices of microscale dimensions or larger. Almost universally, off-chip methods are used to sense displacement in these devices, but this approach is not suitable for nanoscale devices. Nanoscale mechanical sensors offer a greatly enhanced performance that is unattainable with microscale devices. Here we describe the fabrication and operation of self-sensing nanocantilevers with fundamental mechanical resonances up to very high frequencies (VHF). These devices use integrated electronic displacement transducers based on piezoresistive thin metal films, permitting straightforward and optimal nanodevice readout. This non-optical transduction enables applications requiring previously inaccessible sensitivity and bandwidth, such as fast SPM and VHF force sensing. Detection of 127 MHz cantilever vibrations is demonstrated with a thermomechanical-noise-limited displacement sensitivity of 39 fm Hz(-1/2). Our smallest devices, with dimensions approaching the mean free path at atmospheric pressure, maintain high resonance quality factors in ambient conditions. This enables chemisorption measurements in air at room temperature, with unprecedented mass resolution less than 1 attogram (10(-18) g).
                Bookmark

                Author and article information

                Journal
                ACS Nano
                ACS Nano
                nn
                ancac3
                ACS Nano
                American Chemical Society
                1936-0851
                1936-086X
                23 December 2015
                23 December 2014
                27 January 2015
                : 9
                : 1
                : 548-554
                Affiliations
                []Department of Mechanical Engineering, the University of Texas at Austin , Austin, Texas 78712, United States
                []Materials Science and Engineering Program, the University of Texas at Austin , Austin, Texas 78712, United States
                Author notes
                [* ]Address correspondence to dfan@ 123456austin.utexas.edu .
                Article
                10.1021/nn505798w
                4310638
                25536023
                e62f7dd9-89aa-4f41-bde1-6100aa88660a
                Copyright © 2014 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 10 October 2014
                : 23 December 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                nn505798w
                nn-2014-05798w

                Nanotechnology
                micromotors,nanomotors,step motors,assembly,electric tweezers,nanorobotics,nanoelectromechanical systems (nems)

                Comments

                Comment on this article