64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The cell biology of taste

      ,

      The Journal of Cell Biology

      The Rockefeller University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Taste buds are aggregates of 50–100 polarized neuroepithelial cells that detect nutrients and other compounds. Combined analyses of gene expression and cellular function reveal an elegant cellular organization within the taste bud. This review discusses the functional classes of taste cells, their cell biology, and current thinking on how taste information is transmitted to the brain.

          Related collections

          Most cited references 123

          • Record: found
          • Abstract: found
          • Article: not found

          Human receptors for sweet and umami taste.

          The three members of the T1R class of taste-specific G protein-coupled receptors have been hypothesized to function in combination as heterodimeric sweet taste receptors. Here we show that human T1R2/T1R3 recognizes diverse natural and synthetic sweeteners. In contrast, human T1R1/T1R3 responds to the umami taste stimulus l-glutamate, and this response is enhanced by 5'-ribonucleotides, a hallmark of umami taste. The ligand specificities of rat T1R2/T1R3 and T1R1/T1R3 correspond to those of their human counterparts. These findings implicate the T1Rs in umami taste and suggest that sweet and umami taste receptors share a common subunit.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An amino-acid taste receptor.

            The sense of taste provides animals with valuable information about the nature and quality of food. Mammals can recognize and respond to a diverse repertoire of chemical entities, including sugars, salts, acids and a wide range of toxic substances. Several amino acids taste sweet or delicious (umami) to humans, and are attractive to rodents and other animals. This is noteworthy because L-amino acids function as the building blocks of proteins, as biosynthetic precursors of many biologically relevant small molecules, and as metabolic fuel. Thus, having a taste pathway dedicated to their detection probably had significant evolutionary implications. Here we identify and characterize a mammalian amino-acid taste receptor. This receptor, T1R1+3, is a heteromer of the taste-specific T1R1 and T1R3 G-protein-coupled receptors. We demonstrate that T1R1 and T1R3 combine to function as a broadly tuned L-amino-acid sensor responding to most of the 20 standard amino acids, but not to their D-enantiomers or other compounds. We also show that sequence differences in T1R receptors within and between species (human and mouse) can significantly influence the selectivity and specificity of taste responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The receptors for mammalian sweet and umami taste.

              Sweet and umami (the taste of monosodium glutamate) are the main attractive taste modalities in humans. T1Rs are candidate mammalian taste receptors that combine to assemble two heteromeric G-protein-coupled receptor complexes: T1R1+3, an umami sensor, and T1R2+3, a sweet receptor. We now report the behavioral and physiological characterization of T1R1, T1R2, and T1R3 knockout mice. We demonstrate that sweet and umami taste are strictly dependent on T1R-receptors, and show that selective elimination of T1R-subunits differentially abolishes detection and perception of these two taste modalities. To examine the basis of sweet tastant recognition and coding, we engineered animals expressing either the human T1R2-receptor (hT1R2), or a modified opioid-receptor (RASSL) in sweet cells. Expression of hT1R2 in mice generates animals with humanized sweet taste preferences, while expression of RASSL drives strong attraction to a synthetic opiate, demonstrating that sweet cells trigger dedicated behavioral outputs, but their tastant selectivity is determined by the nature of the receptors.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                9 August 2010
                : 190
                : 3
                : 285-296
                Affiliations
                Department of Physiology and Biophysics, and Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136
                Author notes
                Correspondence to Nirupa Chaudhari: nchaudhari@ 123456med.miami.edu ; or Stephen D. Roper: sroper@ 123456med.miami.edu
                Article
                201003144
                10.1083/jcb.201003144
                2922655
                20696704
                © 2010 Chaudhari and Roper

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                Product
                Categories
                Reviews
                Review
                Review series

                Cell biology

                Comments

                Comment on this article