47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Changes in Serum Concentrations of Maternal Poly- and Perfluoroalkyl Substances over the Course of Pregnancy and Predictors of Exposure in a Multiethnic Cohort of Cincinnati, Ohio Pregnant Women during 2003–2006

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Data on predictors of gestational exposure to poly- and perfluoroalkyl substances (PFASs) in the United States are limited. To fill in this gap, in a multiethnic cohort of Ohio pregnant women recruited in 2003–2006, we measured perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and six additional PFASs in maternal serum at ∼16 weeks gestation ( N = 182) and delivery ( N = 78), and in umbilical cord serum ( N = 202). We used linear regression to examine associations between maternal serum PFASs concentrations and demographic, perinatal, and lifestyle factors. PFASs concentrations in maternal sera and in their infants’ cord sera were highly correlated (Spearman rank correlation coefficients = 0.73–0.95). In 71 maternal-infant dyads, unadjusted geometric mean (GM) concentrations (95% confidence interval) (in μg/L) in maternal serum at delivery of PFOS [8.50 (7.01–9.58)] and PFOA [3.43 (3.01–3.90)] were significantly lower than at 16 weeks gestation [11.57 (9.90–13.53], 4.91 (4.32–5.59), respectively], but higher than in infants’ cord serum [3.32 (2.84–3.89), 2.85 (2.51–3.24), respectively] ( P < 0.001). Women who were parous, with a history of previous breastfeeding, black, or in the lowest income category had significantly lower PFOS and PFOA GM concentrations than other women. These data suggest transplacental transfer of PFASs during pregnancy and nursing for the first time in a U.S. birth cohort.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Sources, fate and transport of perfluorocarboxylates.

          This review describes the sources, fate, and transport of perfluorocarboxylates (PFCAs) in the environment, with a specific focus on perfluorooctanoate (PFO). The global historical industry-wide emissions of total PFCAs from direct (manufacture, use, consumer products) and indirect (PFCA impurities and/or precursors) sources were estimated to be 3200-7300 tonnes. It was estimated that the majority (approximately 80%) of PFCAs have been released to the environment from fluoropolymer manufacture and use. Although indirect sources were estimated to be much less importantthan direct sources, there were larger uncertainties associated with the calculations for indirect sources. The physical-chemical properties of PFO (negligible vapor pressure, high solubility in water, and moderate sorption to solids) suggested that PFO would accumulate in surface waters. Estimated mass inventories of PFO in various environmental compartments confirmed that surface waters, especially oceans, contain the majority of PFO. The only environmental sinks for PFO were identified to be sediment burial and transport to the deep oceans, implying a long environmental residence time. Transport pathways for PFCAs in the environment were reviewed, and it was concluded that, in addition to atmospheric transport/degradation of precursors, atmospheric and ocean water transport of the PFCAs themselves could significantly contribute to their long-range transport. It was estimated that 2-12 tonnes/ year of PFO are transported to the Artic by oceanic transport, which is greater than the amount estimated to result from atmospheric transport/degradation of precursors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Environmental Chemicals in Pregnant Women in the United States: NHANES 2003–2004

            Background Exposure to chemicals during fetal development can increase the risk of adverse health effects, and while biomonitoring studies suggest pregnant women are exposed to chemicals, little is known about the extent of multiple chemicals exposures among pregnant women in the United States. Objective We analyzed biomonitoring data from the National Health and Nutritional Examination Survey (NHANES) to characterize both individual and multiple chemical exposures in U.S. pregnant women. Methods We analyzed data for 163 chemical analytes in 12 chemical classes for subsamples of 268 pregnant women from NHANES 2003–2004, a nationally representative sample of the U.S. population. For each chemical analyte, we calculated descriptive statistics. We calculated the number of chemicals detected within the following chemical classes: polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), organochlorine pesticides, and phthalates and across multiple chemical classes. We compared chemical analyte concentrations for pregnant and nonpregnant women using least-squares geometric means, adjusting for demographic and physiological covariates. Results The percentage of pregnant women with detectable levels of an individual chemical ranged from 0 to 100%. Certain polychlorinated biphenyls, organochlorine pesticides, PFCs, phenols, PBDEs, phthalates, polycyclic aromatic hydrocarbons, and perchlorate were detected in 99–100% of pregnant women. The median number of detected chemicals by chemical class ranged from 4 of 12 PFCs to 9 of 13 phthalates. Across chemical classes, median number ranged from 8 of 17 chemical analytes to 50 of 71 chemical analytes. We found, generally, that levels in pregnant women were similar to or lower than levels in nonpregnant women; adjustment for covariates tended to increase levels in pregnant women compared with nonpregnant women. Conclusions Pregnant women in the U.S. are exposed to multiple chemicals. Further efforts are warranted to understand sources of exposure and implications for policy making.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999-2008.

              Since 2002, practices in manufacturing polyfluoroalkyl chemicals (PFCs) in the United States have changed. Previous results from the National Health and Nutrition Examination Survey (NHANES) documented a significant decrease in serum concentrations of some PFCs during 1999-2004. To further assess concentration trends of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA), we analyzed 7876 serum samples collected from a representative sample of the general U.S. population ≥12 years of age during NHANES 1999-2008. We detected PFOS, PFOA, PFNA, and PFHxS in more than 95% of participants. Concentrations differed by sex regardless of age and we observed some differences by race/ethnicity. Since 1999-2000, PFOS concentrations showed a significant downward trend, because of discontinuing industrial production of PFOS, but PFNA concentrations showed a significant upward trend. PFOA concentrations during 1999-2000 were significantly higher than during any other time period examined, but PFOA concentrations have remained essentially unchanged during 2003-2008. PFHxS concentrations showed a downward trend from 1999 to 2006, but concentrations increased during 2007-2008. Additional research is needed to identify the environmental sources contributing to human exposure to PFCs. Nonetheless, these NHANES data suggest that sociodemographic factors may influence exposure and also provide unique information on temporal trends of exposure.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol
                Environ. Sci. Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                15 July 2015
                15 July 2014
                19 August 2014
                : 48
                : 16
                : 9600-9608
                Affiliations
                []Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia 30333, United States
                []Cincinnati Children’s Hospital Medical Center , Cincinnati, Ohio 45229, United States
                [§ ]Child & Family Research Institute, BC Children’s Hospital and Simon Fraser University , Vancouver, British Columbia V6H 3V4, Canada
                Author notes
                [* ]Phone: (770) 488-7891; e-mail: acalafat@ 123456cdc.gov .
                Article
                10.1021/es501811k
                4140533
                25026485
                e6347531-77c0-4f89-b82c-5fe8de27ce32
                Copyright © 2014 American Chemical Society

                Terms of Use

                History
                : 14 April 2014
                : 15 July 2014
                : 03 July 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                es501811k
                es-2014-01811k

                General environmental science
                General environmental science

                Comments

                Comment on this article