7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Involvement of nitric oxide in IFN-gamma-mediated reduction of microvessel smooth muscle cell proliferation.

      Molecular Immunology
      Animals, Cell Division, drug effects, Cell Line, Drug Interactions, Interferon-gamma, pharmacology, Lipopolysaccharides, Mice, Microcirculation, Muscle, Smooth, Vascular, cytology, metabolism, Nitric Oxide, Nitrites, analysis, Tumor Necrosis Factor-alpha

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies in our laboratory demonstrated that murine cerebral microvessel smooth muscle cells (SMC) activate syngeneic CD4+ T-cells in vitro. These T-cells, or their culture supernatants, in turn, strongly inhibit proliferation of the SMC. The present study focuses on IFN-gamma as a mediator of inhibition of SMC proliferation, and addresses the molecular mechanism of this inhibition. IFN-gamma profoundly reduced the proliferation of murine brain microvessel smooth muscle cells in vitro. Three lines of evidence indicate that nitric oxide contributed to this effect: (1) IFN-gamma-mediated inhibition of proliferation correlated with the quantity of nitrite, a stable breakdown product of nitric oxide, in culture supernatants; (2) the addition of N(g)- monomethyl-l-arginine, and inhibitor of nitric oxide synthesis, restored proliferation to control or near control levels; and (3) the addition of hemoglobin, which has a high affinity for, and thus sequesters nitric oxide, also resulted in significant restoration of the proliferative response. However, the nitric oxide donating chemical sodium nitro-prusside, at concentrations up to 100 microM, had no direct cytostatic effect. These results suggest that nitric oxide is a necessary but insufficient component in IFN-gamma-mediated inhibition of microvessel smooth muscle cell proliferation. TNF-alpha also stimulated nitric oxide production by the smooth muscle cells, but was not as potent as IFN-gamma at inhibiting proliferation. Knowledge of the physiological effects of lymphokines on cells of the brain microvasculature will contribute towards a better understanding of inflammatory processes in diseases such as multiple sclerosis and infectious encephalitis.

          Related collections

          Author and article information

          Comments

          Comment on this article