9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      INTERSPECIFIC NEIGHBORS CHANGE SEED DISPERSAL PATTERN OF AN AVIAN-DISPERSED PLANT

      Ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Spatial patterns of seed dispersal, their determinants and consequences for recruitment.

          Growing interest in spatial ecology is promoting new approaches to the study of seed dispersal, one of the key processes determining the spatial structure of plant populations. Seed-dispersion patterns vary among plant species, populations and individuals, at different distances from parents, different microsites and different times. Recent field studies have made progress in elucidating the mechanisms behind these patterns and the implications of these patterns for recruitment success. Together with the development and refinement of mathematical models, this promises a deeper, more mechanistic understanding of dispersal processes and their consequences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beta-diversity in tropical forest trees.

            The high alpha-diversity of tropical forests has been amply documented, but beta-diversity-how species composition changes with distance-has seldom been studied. We present quantitative estimates of beta-diversity for tropical trees by comparing species composition of plots in lowland terra firme forest in Panama, Ecuador, and Peru. We compare observations with predictions derived from a neutral model in which habitat is uniform and only dispersal and speciation influence species turnover. We find that beta-diversity is higher in Panama than in western Amazonia and that patterns in both areas are inconsistent with the neutral model. In Panama, habitat variation appears to increase species turnover relative to Amazonia, where unexpectedly low turnover over great distances suggests that population densities of some species are bounded by as yet unidentified processes. At intermediate scales in both regions, observations can be matched by theory, suggesting that dispersal limitation, with speciation, influences species turnover.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              General theory of competitive coexistence in spatially-varying environments.

              P Chesson (2000)
              A general model of competitive and apparent competitive interactions in a spatially-variable environment is developed and analyzed to extend findings on coexistence in a temporally-variable environment to the spatial case and to elucidate new principles. In particular, coexistence mechanisms are divided into variation-dependent and variation-independent mechanisms with variation-dependent mechanisms including spatial generalizations of relative nonlinearity and the storage effect. Although directly analogous to the corresponding temporal mechanisms, these spatial mechanisms involve different life history traits which suggest that the spatial storage effect should arise more commonly than the temporal storage effect and spatial relative nonlinearity should arise less commonly than temporal relative nonlinearity. Additional mechanisms occur in the spatial case due to spatial covariance between the finite rate of increase of a local population and its local abundance, which has no clear temporal analogue. A limited analysis of these additional mechanisms shows that they have similar properties to the storage effect and relative nonlinearity and potentially may be considered as enlargements of the earlier mechanisms. The rate of increase of a species perturbed to low density is used to quantify coexistence. A general quadratic approximation, which is exact in some important cases, divides this rate of increase into contributions from the various mechanisms above and admits no other mechanisms, suggesting that opportunities for coexistence in a spatially-variable environment are fully characterized by these mechanisms within this general model. Three spatially-implicit models are analyzed as illustrations of the general findings and of techniques using small variance approximations. The contributions to coexistence of the various mechanisms are expressed in terms of simple interpretable formulae. These spatially-implicit models include a model of an annual plant community, a spatial multispecies version of the lottery model, and a multispecies model of an insect community competing for spatially-patchy and ephemeral food.
                Bookmark

                Author and article information

                Journal
                Ecology
                Ecology
                Wiley-Blackwell
                0012-9658
                September 2005
                September 2005
                : 86
                : 9
                : 2440-2449
                Article
                10.1890/04-1479
                e6423969-c1ed-4ea5-a510-77334b1ae36a
                © 2005

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article