58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability.

          Abstract

          Maintenance of proper membrane excitability is vital to neuronal function and in several neuronal types this relies on a balance between receptor-mediated excitation and inhibition. Here the authors report a crosstalk between excitatory kainate receptors and inhibitory glycine receptors that relies on the SUMOylation status of PKC.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Protein modification by SUMO.

          Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzyme pathway that is analogous to the ubiquitin pathway. The functional consequences of SUMO attachment vary greatly from substrate to substrate, and in many cases are not understood at the molecular level. Frequently SUMO alters interactions of substrates with other proteins or with DNA, but SUMO can also act by blocking ubiquitin attachment sites. An unusual feature of SUMO modification is that, for most substrates, only a small fraction of the substrate is sumoylated at any given time. This review discusses our current understanding of how SUMO conjugation is controlled, as well as the roles of SUMO in a number of biological processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia.

            SUMOylation is a dynamic process, catalyzed by SUMO-specific ligases and reversed by Sentrin/SUMO-specific proteases (SENPs). The physiologic consequences of SUMOylation and deSUMOylation are not fully understood. Here we investigate the phenotypes of mice lacking SENP1 and find that SENP1(-/-) embryos show severe fetal anemia stemming from deficient erythropoietin (Epo) production and die midgestation. We determine that SENP1 controls Epo production by regulating the stability of hypoxia-inducible factor 1alpha (HIF1alpha) during hypoxia. Hypoxia induces SUMOylation of HIF1alpha, which promotes its binding to a ubiquitin ligase, von Hippel-Lindau (VHL) protein, through a proline hydroxylation-independent mechanism, leading to its ubiquitination and degradation. In SENP1(-/-) MEFs, hypoxia-induced transcription of HIF1alpha-dependent genes such as vascular endothelial growth factor (VEGF) and glucose transporter 1 (Glut-1) is markedly reduced. These results show that SENP1 plays a key role in the regulation of the hypoxic response through regulation of HIF1alpha stability and that SUMOylation can serve as a direct signal for ubiquitin-dependent degradation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular structure and function of the glycine receptor chloride channel.

              The glycine receptor chloride channel (GlyR) is a member of the nicotinic acetylcholine receptor family of ligand-gated ion channels. Functional receptors of this family comprise five subunits and are important targets for neuroactive drugs. The GlyR is best known for mediating inhibitory neurotransmission in the spinal cord and brain stem, although recent evidence suggests it may also have other physiological roles, including excitatory neurotransmission in embryonic neurons. To date, four alpha-subunits (alpha1 to alpha4) and one beta-subunit have been identified. The differential expression of subunits underlies a diversity in GlyR pharmacology. A developmental switch from alpha2 to alpha1beta is completed by around postnatal day 20 in the rat. The beta-subunit is responsible for anchoring GlyRs to the subsynaptic cytoskeleton via the cytoplasmic protein gephyrin. The last few years have seen a surge in interest in these receptors. Consequently, a wealth of information has recently emerged concerning GlyR molecular structure and function. Most of the information has been obtained from homomeric alpha1 GlyRs, with the roles of the other subunits receiving relatively little attention. Heritable mutations to human GlyR genes give rise to a rare neurological disorder, hyperekplexia (or startle disease). Similar syndromes also occur in other species. A rapidly growing list of compounds has been shown to exert potent modulatory effects on this receptor. Since GlyRs are involved in motor reflex circuits of the spinal cord and provide inhibitory synapses onto pain sensory neurons, these agents may provide lead compounds for the development of muscle relaxant and peripheral analgesic drugs.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                19 September 2014
                : 5
                : 4980
                Affiliations
                [1 ]Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai 200025, China
                [2 ]Center for Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200025, China
                [3 ]Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, Texas 77030, USA
                [4 ]Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary , Calgary T2N 4 N1, Alberta, Canada
                [5 ]Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama 35294, USA
                Author notes
                [*]

                These authors contributed equally to this work

                Article
                ncomms5980
                10.1038/ncomms5980
                4199113
                25236484
                e64b3c45-fb7b-4a0e-b35a-d32696eb6918
                Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 26 March 2014
                : 13 August 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article