14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlight

          Stomatal conductance of two species (a broadleaf and a conifer) increased with increasing temperature. This response was independent of carbon metabolism, plant water status, or vapour pressure difference.

          Abstract

          The effect of temperature on stomatal conductance ( g s) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology—a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19–48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO 2 concentrations. Increases in leaf temperature caused stomatal opening at both ambient and elevated [CO 2]. The g s increased by 42% in poplar and by 40% in loblolly pine when leaf temperature increased from 30°C to 40°C at a vapour pressure difference of 1 kPa. Stomatal limitation to photosynthesis decreased in elevated temperature in loblolly pine but not in poplar. The ratio of net photosynthesis to g s depended on leaf temperature, especially at high temperatures. Evaporative cooling of transpiring leaves resulted in reductions in leaf temperature up to 9°C in well-watered poplar but only 1°C in drought-stressed poplar and in loblolly pine. As global mean temperatures rise and temperature extremes become more frequent and severe, understanding the effect of temperature on g s, and modelling that relationship, will become increasingly important.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          The role of stomata in sensing and driving environmental change.

          Stomata, the small pores on the surfaces of leaves and stalks, regulate the flow of gases in and out of leaves and thus plants as a whole. They adapt to local and global changes on all timescales from minutes to millennia. Recent data from diverse fields are establishing their central importance to plant physiology, evolution and global ecology. Stomatal morphology, distribution and behaviour respond to a spectrum of signals, from intracellular signalling to global climatic change. Such concerted adaptation results from a web of control systems, reminiscent of a 'scale-free' network, whose untangling requires integrated approaches beyond those currently used.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A critical appraisal of a combined stomatal-photosynthesis model for C3 plants

            R. LEUNING (1995)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error.

              The principles, equipment and procedures for measuring leaf and canopy gas exchange have been described previously as has chlorophyll fluorescence. Simultaneous measurement of the responses of leaf gas exchange and modulated chlorophyll fluorescence to light and CO2 concentration now provide a means to determine a wide range of key biochemical and biophysical limitations on photo synthesis in vivo. Here the mathematical frameworks and practical procedures for determining these parameters in vivo are consolidated. Leaf CO2 uptake (A) versus intercellular CO2 concentration (Ci) curves may now be routinely obtained from commercial gas exchange systems. The potential pitfalls, and means to avoid these, are examined. Calculation of in vivo maximum rates of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) carboxylation (Vc,max), electron transport driving regeneration of RuBP (Jmax), and triose-phosphate utilization (VTPU) are explained; these three parameters are now widely assumed to represent the major limitations to light-saturated photosynthesis. Precision in determining these in intact leaves is improved by the simultaneous measurement of electron transport via modulated chlorophyll fluorescence. The A/Ci response also provides a simple practical method for quantifying the limitation that stomata impose on CO2 assimilation. Determining the rate of photorespiratory release of oxygen (Rl) has previously only been possible by isotopic methods, now, by combining gas exchange and fluorescence measurements, Rl may be determined simply and routinely in the field. The physical diffusion of CO2 from the intercellular air space to the site of Rubisco in C3 leaves has long been suspected of being a limitation on photosynthesis, but it has commonly been ignored because of the lack of a practical method for its determination. Again combining gas exchange and fluorescence provides a means to determine mesophyll conductance. This method is described and provides insights into the magnitude and basis of this limitation.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                01 March 2017
                06 March 2017
                06 March 2017
                : 68
                : 7
                : 1757-1767
                Affiliations
                [1 ]Department of Forest Botany, Dendrology and Geobiocenology, Mendel University in Brno , Brno, Czech Republic
                [2 ]Siberian Federal University , Krasnoyarsk, Russia
                [3 ]Institute of Plant Breeding , Genetics and Genomics , University of Georgia , Athens, GA, USA
                [4 ]Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia , Athens, GA, USA
                Author notes

                Editor: Tracy Lawson, University of Essex

                Article
                erx052
                10.1093/jxb/erx052
                5444456
                28338959
                e64b9cd6-9f1f-496b-a328-9b3838ca9da6
                © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 11
                Categories
                Research Paper

                Plant science & Botany
                ball–berry model,elevated temperature,evaporative cooling,global change,heat waves,stomatal conductance.

                Comments

                Comment on this article