5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cell competition during reprogramming gives rise to dominant clones

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability to generate induced pluripotent stem cells from differentiated cell types has enabled researchers to engineer cell states. Although studies have identifed molecular networks that reprogram cells to pluripotency, the cellular dynamics of these processes remain poorly understood. Here, by combining cellular barcoding, mathematical modelling, and lineage tracing approaches, we demonstrate that reprogramming dynamics in heterogeneous populations are driven by dominant "elite" clones. Clones arise a priori from a population of poised mouse embryonic fibroblasts (MEFs) derived from Wnt1-expressing cells that may represent a neural crest population. This work highlights the importance of cellular dynamics in fate programming outcomes and uncovers cell competition as a mechanism by which cells with context-specific eliteness emerge to occupy and dominate the reprogramming niche.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Direct cell reprogramming is a stochastic process amenable to acceleration

          Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) can be achieved by overexpression of Oct4, Sox2, Klf4 and c-Myc transcription factors, but only a minority of donor somatic cells can be reprogrammed to pluripotency. Here we demonstrate that reprogramming is a continuous stochastic process where almost all donor cells eventually give rise to iPSCs upon continued growth and transcription factor expression. Additional inhibition the p53/p21 pathway or overexpression of Lin28 increased the cell division rate and resulted in an accelerated kinetics of iPSC formation that was directly proportional to the increase in cell proliferation. In contrast, Nanog overexpression accelerated reprogramming in a predominantly cell division rate independent manner. Quantitative analyses define distinct cell division rate dependent and independent modes for accelerating the stochastic course of reprogramming, and suggest that the number of cell divisions is a key parameter driving epigenetic reprogramming to pluripotency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oct4-induced pluripotency in adult neural stem cells.

            The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem cells (1F iPS) are similar to embryonic stem cells in vitro and in vivo. Not only can these cells can be efficiently differentiated into NSCs, cardiomyocytes, and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MBNL proteins repress ES-cell-specific alternative splicing and reprogramming.

              Previous investigations of the core gene regulatory circuitry that controls the pluripotency of embryonic stem (ES) cells have largely focused on the roles of transcription, chromatin and non-coding RNA regulators. Alternative splicing represents a widely acting mode of gene regulation, yet its role in regulating ES-cell pluripotency and differentiation is poorly understood. Here we identify the muscleblind-like RNA binding proteins, MBNL1 and MBNL2, as conserved and direct negative regulators of a large program of cassette exon alternative splicing events that are differentially regulated between ES cells and other cell types. Knockdown of MBNL proteins in differentiated cells causes switching to an ES-cell-like alternative splicing pattern for approximately half of these events, whereas overexpression of MBNL proteins in ES cells promotes differentiated-cell-like alternative splicing patterns. Among the MBNL-regulated events is an ES-cell-specific alternative splicing switch in the forkhead family transcription factor FOXP1 that controls pluripotency. Consistent with a central and negative regulatory role for MBNL proteins in pluripotency, their knockdown significantly enhances the expression of key pluripotency genes and the formation of induced pluripotent stem cells during somatic cell reprogramming.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                March 21 2019
                : eaan0925
                Article
                10.1126/science.aan0925
                30898844
                e6594acd-a71f-4d9f-8207-61ca3a77d272
                © 2019
                History

                Comments

                Comment on this article