8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of Ldb19/Art1 localization and function at the late Golgi

      research-article
      , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The arrestin-related family of proteins (ARTs) are potent regulators of membrane traffic at multiple cellular locations in the yeast Saccharomyces cerevisiae. Several ARTs act at multiple locations, suggesting that ARTs with well-established functions at one location may have additional, as of yet, uncharacterized roles at other locations in the cell. To more fully understand the spectrum of cellular functions regulated by ART proteins, we explored the localization and function of Ldb19/Art1, which has previously been shown to function at the plasma membrane, yet is reported to localize to the trans-Golgi network (TGN). We report that the C-terminal fusion of Ldb19 with GFP is functional and, as previously reported, localizes to the TGN. We further establish that Ldb19 associates with late stages of TGN maturation that are enriched in the clathrin adaptor protein complex-1 (AP-1). Additionally, we present genetic interaction assays that suggest Ldb19 acts at the late TGN in a mechanism related to that of AP-1. However, Ldb19 and AP-1 have dissimilar phenotypes in a subset of assays of membrane traffic, suggesting Ldb19 functions at the TGN are distinct from those of AP-1. Together these results indicate Ldb19 functions at the TGN, in addition to its well-established role in endocytosis.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.

          A major goal of biology is to provide a quantitative description of cellular behaviour. This task, however, has been hampered by the difficulty in measuring protein abundances and their variation. Here we present a strategy that pairs high-throughput flow cytometry and a library of GFP-tagged yeast strains to monitor rapidly and precisely protein levels at single-cell resolution. Bulk protein abundance measurements of >2,500 proteins in rich and minimal media provide a detailed view of the cellular response to these conditions, and capture many changes not observed by DNA microarray analyses. Our single-cell data argue that noise in protein expression is dominated by the stochastic production/destruction of messenger RNAs. Beyond this global trend, there are dramatic protein-specific differences in noise that are strongly correlated with a protein's mode of transcription and its function. For example, proteins that respond to environmental changes are noisy whereas those involved in protein synthesis are quiet. Thus, these studies reveal a remarkable structure to biological noise and suggest that protein noise levels have been selected to reflect the costs and potential benefits of this variation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation.

            Networks of protein interactions coordinate cellular functions. We describe a bimolecular fluorescence complementation (BiFC) assay for determination of the locations of protein interactions in living cells. This approach is based on complementation between two nonfluorescent fragments of the yellow fluorescent protein (YFP) when they are brought together by interactions between proteins fused to each fragment. BiFC analysis was used to investigate interactions among bZIP and Rel family transcription factors. Regions outside the bZIP domains determined the locations of bZIP protein interactions. The subcellular sites of protein interactions were regulated by signaling. Cross-family interactions between bZIP and Rel proteins affected their subcellular localization and modulated transcription activation. These results attest to the general applicability of the BiFC assay for studies of protein interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface.

              The diversity of plasma membrane (PM) proteins presents a challenge for the achievement of cargo-specific regulation of endocytosis. Here, we describe a family of proteins in yeast (ARTs, for arrestin-related trafficking adaptors) that function by targeting specific PM proteins to the endocytic system. Two members (Art1 and Art2) of the family were discovered in chemical-genetic screens, and they direct downregulation of distinct amino acid transporters triggered by specific stimuli. Sequence analysis revealed a total of nine ART family members in yeast. In addition to similarity to arrestins, the ARTs each contain multiple PY motifs. These motifs are required for recruitment of the Rsp5/Nedd4-like ubiquitin ligase, which modifies the cargoes as well as the ARTs. As a result, ubiquitinated cargoes are internalized and targeted to the vacuole (lysosome) for degradation. We propose that ARTs provide a cargo-specific quality-control pathway that mediates endocytic downregulation by coupling Rsp5/Nedd4 to diverse plasma membrane proteins.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Project administrationRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                7 November 2018
                2018
                : 13
                : 11
                : e0206944
                Affiliations
                [001]Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
                National Heart Lung and Blood Institute, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-1485-4800
                http://orcid.org/0000-0002-2383-0109
                Article
                PONE-D-18-22989
                10.1371/journal.pone.0206944
                6221343
                30403748
                e6639bbc-496c-45ed-9334-e5aedd5638c0
                © 2018 Martínez-Márquez, Duncan

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 August 2018
                : 22 October 2018
                Page count
                Figures: 6, Tables: 0, Pages: 17
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: F31-GM112470
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01-GM092741
                Award Recipient :
                This research was supported in part by the National Institutes of Health to J.Y.M.M. (F31-GM112470) and M.C.D. (R01-GM092741), and by the Michigan Protein Folding Disease Initiative (M.C.D.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Membranes
                Membrane Proteins
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cell Membranes
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Endocytosis
                Biology and Life Sciences
                Cell Biology
                Cell Processes
                Secretory Pathway
                Endocytosis
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Saccharomyces Cerevisiae
                Research and Analysis Methods
                Model Organisms
                Saccharomyces Cerevisiae
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Yeast
                Saccharomyces
                Saccharomyces Cerevisiae
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Yeast and Fungal Models
                Saccharomyces Cerevisiae
                Research and Analysis Methods
                Imaging Techniques
                Fluorescence Imaging
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Probe Techniques
                Immunoblotting
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Probe Techniques
                Immunoblotting
                Biology and Life Sciences
                Organisms
                Eukaryota
                Fungi
                Yeast
                Biology and Life Sciences
                Cell Biology
                Cell Physiology
                Membrane Trafficking
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article