38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Overexpression of anti-apoptotic BCL-2 family members is a hallmark of many lymphoid malignancies, including chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL) that can be targeted with small molecule inhibitors. ABT-199 is a rationally designed BCL-2 homology (BH)-3 mimetic that specifically binds to BCL-2, but not to MCL-1 and BCL-xL. Although the thrombocytopenia that occurs with navitoclax treatment has not been a problem with ABT-199, clinical trials in CLL could benefit by lowering the ABT-199 concentration through targeting other survival pathways. In this study, we investigated the mechanisms of resistance that develops to ABT-199 therapy by generating ABT-199-resistant (ABT199-R) cell lines via chronic exposure of NHL cell lines to ABT-199. Acquired resistance resulted in substantial AKT activation and upregulation of MCL-1 and BCL-xL levels that sequestered BIM. ABT199-R cells exhibited increased MCL-1 stability and failed to activate BAX in response to ABT-199. The ABT-199 acquired and inherent resistant cells were sensitized to treatment with ABT-199 by inhibitors of the PI3K, AKT, and mTOR pathways, NVP-BEZ235 and GS-1101. NVP-BEZ235, a dual inhibitor of p-AKT and mTOR, reduced MCL-1 levels causing BIM release from MCL-1 and BCL-xL, thus leading to cell death by BAX activation. The PI3K δ inhibitor GS-1101 (idelalisib) downregulated MCL-1 and sensitized ABT199-R cells through AKT-mediated BAX activation. A genetic approach, through siRNA-mediated down-regulation of AKT, MCL-1, and BCL-xL, significantly decreased cell survival, demonstrating the importance of these cell survival factors for ABT-199 resistance. Our findings suggest a novel mechanism that modulates the expression and activity of pro-survival proteins to confer treatment resistance that could be exploited by a rational combination therapeutic regimen that could be effective for treating lymphoid malignancies.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized.

          Since apoptosis is impaired in malignant cells overexpressing prosurvival Bcl-2 proteins, drugs mimicking their natural antagonists, BH3-only proteins, might overcome chemoresistance. Of seven putative BH3 mimetics tested, only ABT-737 triggered Bax/Bak-mediated apoptosis. Despite its high affinity for Bcl-2, Bcl-x(L), and Bcl-w, many cell types proved refractory to ABT-737. We show that this resistance reflects ABT-737's inability to target another prosurvival relative, Mcl-1. Downregulation of Mcl-1 by several strategies conferred sensitivity to ABT-737. Furthermore, enforced Mcl-1 expression in a mouse lymphoma model conferred resistance. In contrast, cells overexpressing Bcl-2 remained highly sensitive to ABT-737. Hence, ABT-737 should prove efficacious in tumors with low Mcl-1 levels, or when combined with agents that inactivate Mcl-1, even to treat those tumors that overexpress Bcl-2.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia.

            B-cell leukemia/lymphoma 2 (BCL-2) prevents commitment to programmed cell death at the mitochondrion. It remains a challenge to identify those tumors that are best treated by inhibition of BCL-2. Here, we demonstrate that acute myeloid leukemia (AML) cell lines, primary patient samples, and murine primary xenografts are very sensitive to treatment with the selective BCL-2 antagonist ABT-199. In primary patient cells, the median IC50 was approximately 10 nmol/L, and cell death occurred within 2 hours. Our ex vivo sensitivity results compare favorably with those observed for chronic lymphocytic leukemia, a disease for which ABT-199 has demonstrated consistent activity in clinical trials. Moreover, mitochondrial studies using BH3 profiling demonstrate activity at the mitochondrion that correlates well with cytotoxicity, supporting an on-target mitochondrial mechanism of action. Our protein and BH3 profiling studies provide promising tools that can be tested as predictive biomarkers in any clinical trial of ABT-199 in AML.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110δ, for relapsed/refractory chronic lymphocytic leukemia.

              In a phase 1 trial, idelalisib (GS-1101, CAL-101), a selective inhibitor of the lipid kinase PI3Kδ, was evaluated in 54 patients with relapsed/refractory chronic lymphocytic leukemia (CLL) with adverse characteristics including bulky lymphadenopathy (80%), extensive prior therapy (median 5 [range 2-14] prior regimens), treatment-refractory disease (70%), unmutated IGHV (91%), and del17p and/or TP53 mutations (24%). Patients were treated at 6 dose levels of oral idelalisib (range 50-350 mg once or twice daily) and remained on continuous therapy while deriving clinical benefit. Idelalisib-mediated inhibition of PI3Kδ led to abrogation of Akt phosphorylation in patient CLL cells and significantly reduced serum levels of CLL-related chemokines. The most commonly observed grade ≥3 adverse events were pneumonia (20%), neutropenic fever (11%), and diarrhea (6%). Idelalisib treatment resulted in nodal responses in 81% of patients. The overall response rate was 72%, with 39% of patients meeting the criteria for partial response per IWCLL 2008 and 33% meeting the recently updated criteria of PR with treatment-induced lymphocytosis.(1,2) The median progression-free survival for all patients was 15.8 months. This study demonstrates the clinical utility of inhibiting the PI3Kδ pathway with idelalisib. Our findings support the further development of idelalisib in patients with CLL. These trials were registered at clinicaltrials.gov as #NCT00710528 and #NCT01090414.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                January 2015
                15 January 2015
                1 January 2015
                : 6
                : 1
                : e1593
                Affiliations
                [1 ]Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic , Cleveland, OH 44195, USA
                [2 ]Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH 44106, USA
                [3 ]Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic , Cleveland, OH 44195, USA
                [4 ]Department of Clinical Pathology, Institute of Pathology and Laboratory Medicine, Cleveland Clinic , Cleveland, OH 44195, USA
                Author notes
                [* ]Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic , NB40, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Tel: +1 216 444 9970; Fax: +1 216 445 6269; E-mail: almasaa@ 123456ccf.org
                Article
                cddis2014525
                10.1038/cddis.2014.525
                4669737
                25590803
                e667b5ee-ca45-4fb2-8ee0-ffdd4744ba95
                Copyright © 2015 Macmillan Publishers Limited

                Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International Licence. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons licence, users will need to obtain permission from the licence holder to reproduce the material. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0

                History
                : 28 July 2014
                : 25 October 2014
                : 03 November 2014
                Categories
                Original Article

                Cell biology
                Cell biology

                Comments

                Comment on this article