61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Can Taichi Reshape the Brain? A Brain Morphometry Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although research has provided abundant evidence for Taichi-induced improvements in psychological and physiological well-being, little is known about possible links to brain structure of Taichi practice. Using high-resolution MRI of 22 Tai Chi Chuan (TCC) practitioners and 18 controls matched for age, sex and education, we set out to examine the underlying anatomical correlates of long-term Taichi practice at two different levels of regional specificity. For this purpose, parcel-wise and vertex-wise analyses were employed to quantify the difference between TCC practitioners and the controls based on cortical surface reconstruction. We also adopted the Attention Network Test (ANT) to explore the effect of TCC on executive control. TCC practitioners, compared with controls, showed significantly thicker cortex in precentral gyrus, insula sulcus and middle frontal sulcus in the right hemisphere and superior temporal gyrus and medial occipito-temporal sulcus and lingual sulcus in the left hemisphere. Moreover, we found that thicker cortex in left medial occipito-temporal sulcus and lingual sulcus was associated with greater intensity of TCC practice. These findings indicate that long-term TCC practice could induce regional structural change and also suggest TCC might share similar patterns of neural correlates with meditation and aerobic exercise.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          A hybrid approach to the skull stripping problem in MRI.

          We present a novel skull-stripping algorithm based on a hybrid approach that combines watershed algorithms and deformable surface models. Our method takes advantage of the robustness of the former as well as the surface information available to the latter. The algorithm first localizes a single white matter voxel in a T1-weighted MRI image, and uses it to create a global minimum in the white matter before applying a watershed algorithm with a preflooding height. The watershed algorithm builds an initial estimate of the brain volume based on the three-dimensional connectivity of the white matter. This first step is robust, and performs well in the presence of intensity nonuniformities and noise, but may erode parts of the cortex that abut bright nonbrain structures such as the eye sockets, or may remove parts of the cerebellum. To correct these inaccuracies, a surface deformation process fits a smooth surface to the masked volume, allowing the incorporation of geometric constraints into the skull-stripping procedure. A statistical atlas, generated from a set of accurately segmented brains, is used to validate and potentially correct the segmentation, and the MRI intensity values are locally re-estimated at the boundary of the brain. Finally, a high-resolution surface deformation is performed that accurately matches the outer boundary of the brain, resulting in a robust and automated procedure. Studies by our group and others outperform other publicly available skull-stripping tools. Copyright 2004 Elsevier Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Specification of cerebral cortical areas.

            P Rakic (1988)
            How the immense population of neurons that constitute the human cerebral neocortex is generated from progenitors lining the cerebral ventricle and then distributed to appropriate layers of distinctive cytoarchitectonic areas can be explained by the radial unit hypothesis. According to this hypothesis, the ependymal layer of the embryonic cerebral ventricle consists of proliferative units that provide a proto-map of prospective cytoarchitectonic areas. The output of the proliferative units is translated via glial guides to the expanding cortex in the form of ontogenetic columns, whose final number for each area can be modified through interaction with afferent input. Data obtained through various advanced neurobiological techniques, including electron microscopy, immunocytochemistry, [3H]thymidine and receptor autoradiography, retrovirus gene transfer, neural transplants, and surgical or genetic manipulation of cortical development, furnish new details about the kinetics of cell proliferation, their lineage relationships, and phenotypic expression that favor this hypothesis. The radial unit model provides a framework for understanding cerebral evolution, epigenetic regulation of the parcellation of cytoarchitectonic areas, and insight into the pathogenesis of certain cortical disorders in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Meditation experience is associated with increased cortical thickness.

              Previous research indicates that long-term meditation practice is associated with altered resting electroencephalogram patterns, suggestive of long lasting changes in brain activity. We hypothesized that meditation practice might also be associated with changes in the brain's physical structure. Magnetic resonance imaging was used to assess cortical thickness in 20 participants with extensive Insight meditation experience, which involves focused attention to internal experiences. Brain regions associated with attention, interoception and sensory processing were thicker in meditation participants than matched controls, including the prefrontal cortex and right anterior insula. Between-group differences in prefrontal cortical thickness were most pronounced in older participants, suggesting that meditation might offset age-related cortical thinning. Finally, the thickness of two regions correlated with meditation experience. These data provide the first structural evidence for experience-dependent cortical plasticity associated with meditation practice.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                9 April 2013
                : 8
                : 4
                : e61038
                Affiliations
                [1 ]Key Laboratory of Behavioral Science, Laboratory for Functional Connectome and Development, Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
                [2 ]Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
                [3 ]Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China
                [4 ]Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, China
                [5 ]University of Chinese Academy of Sciences, Beijing, China
                Beijing Normal University, China
                Author notes

                Competing Interests: The senior author (Dr. Xi-Nian Zuo) currently serves as an academic editor for PLOS ONE. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: GXW JL XNZ. Performed the experiments: GXW HMD. Analyzed the data: GXW TX LJ FMF XNZ. Contributed reagents/materials/analysis tools: GXW JL XNZ. Wrote the paper: GXW TX FMF HMD LJ ZY HJL JL XNZ.

                Article
                PONE-D-12-34411
                10.1371/journal.pone.0061038
                3621760
                23585869
                e668a9aa-3d94-4f94-8447-81a6944b8c3b
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 October 2012
                : 5 March 2013
                Page count
                Pages: 9
                Funding
                This work was supported by the National Natural Science Foundation of China (31200794, 91132728, 81171409, 81030028) and the Open Research Fund of the Key Laboratory of Mental Health, the Knowledge Innovation Program (KSCX2-EW-J-8) from Institute of Psychology, Chinese Academy of Sciences (CAS). The senior author Prof. Xi-Nian Zuo acknowledges the Hundred Talents Program (Y2CX112006) and the Key Research Program (KSZD-EW-TZ-002) of CAS and the Major Joint Fund for International Cooperation and Exchange of the National Natural Science Foundation (81220108014). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Neuroanatomy
                Neuroscience
                Neuroimaging
                Fmri
                Neuroanatomy
                Medicine
                Anatomy and Physiology
                Neurological System
                Neuroanatomy
                Mental Health
                Psychology
                Behavior
                Attention (Behavior)
                Cognitive Psychology
                Neurology
                Neuroimaging
                Radiology
                Diagnostic Radiology
                Magnetic Resonance Imaging
                Sports and Exercise Medicine

                Uncategorized
                Uncategorized

                Comments

                Comment on this article