37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During mitosis, ER network reorganization can lead to packing of the ER into tight concentric layers at the cell cortex and occurs in tandem with rounding of the cell. Morphometric and 3D EM analysis shows that in addition to reorganization, ER sheets undergo transformation toward more fenestrated and tubular forms before anaphase in mammalian cells.

          Abstract

          The endoplasmic reticulum (ER) is both structurally and functionally complex, consisting of a dynamic network of interconnected sheets and tubules. To achieve a more comprehensive view of ER organization in interphase and mitotic cells and to address a discrepancy in the field (i.e., whether ER sheets persist, or are transformed to tubules, during mitosis), we analyzed the ER in four different mammalian cell lines using live-cell imaging, high-resolution electron microscopy, and three dimensional electron microscopy. In interphase cells, we found great variation in network organization and sheet structures among different cell lines. In mitotic cells, we show that the ER undergoes both spatial reorganization and structural transformation of sheets toward more fenestrated and tubular forms. However, the extent of spatial reorganization and sheet-to-tubule transformation varies among cell lines. Fenestration and tubulation of the ER correlates with a reduced number of membrane-bound ribosomes.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          A class of membrane proteins shaping the tubular endoplasmic reticulum.

          How is the characteristic shape of a membrane bound organelle achieved? We have used an in vitro system to address the mechanism by which the tubular network of the endoplasmic reticulum (ER) is generated and maintained. Based on the inhibitory effect of sulfhydryl reagents and antibodies, network formation in vitro requires the integral membrane protein Rtn4a/NogoA, a member of the ubiquitous reticulon family. Both in yeast and mammalian cells, the reticulons are largely restricted to the tubular ER and are excluded from the continuous sheets of the nuclear envelope and peripheral ER. Upon overexpression, the reticulons form tubular membrane structures. The reticulons interact with DP1/Yop1p, a conserved integral membrane protein that also localizes to the tubular ER. These proteins share an unusual hairpin topology in the membrane. The simultaneous absence of the reticulons and Yop1p in S. cerevisiae results in disrupted tubular ER. We propose that these "morphogenic" proteins partition into and stabilize highly curved ER membrane tubules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms determining the morphology of the peripheral ER.

            The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by the curvature-stabilizing proteins reticulons and DP1/Yop1p, but how the sheets are formed is unclear. Here, we identify several sheet-enriched membrane proteins in the mammalian ER, including proteins that translocate and modify newly synthesized polypeptides, as well as coiled-coil membrane proteins that are highly upregulated in cells with proliferated ER sheets, all of which are localized by membrane-bound polysomes. These results indicate that sheets and tubules correspond to rough and smooth ER, respectively. One of the coiled-coil proteins, Climp63, serves as a "luminal ER spacer" and forms sheets when overexpressed. More universally, however, sheet formation appears to involve the reticulons and DP1/Yop1p, which localize to sheet edges and whose abundance determines the ratio of sheets to tubules. These proteins may generate sheets by stabilizing the high curvature of edges. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear Membrane Dynamics and Reassembly in Living Cells: Targeting of an Inner Nuclear Membrane Protein in Interphase and Mitosis

              The mechanisms of localization and retention of membrane proteins in the inner nuclear membrane and the fate of this membrane system during mitosis were studied in living cells using the inner nuclear membrane protein, lamin B receptor, fused to green fluorescent protein (LBR–GFP). Photobleaching techniques revealed the majority of LBR–GFP to be completely immobilized in the nuclear envelope (NE) of interphase cells, suggesting a tight binding to heterochromatin and/or lamins. A subpopulation of LBR–GFP within ER membranes, by contrast, was entirely mobile and diffused rapidly and freely (D = 0.41 ± 0.1 μm2/s). High resolution confocal time-lapse imaging in mitotic cells revealed LBR–GFP redistributing into the interconnected ER membrane system in prometaphase, exhibiting the same high mobility and diffusion constant as observed in interphase ER membranes. LBR–GFP rapidly diffused across the cell within the membrane network defined by the ER, suggesting the integrity of the ER was maintained in mitosis, with little or no fragmentation and vesiculation. At the end of mitosis, nuclear membrane reformation coincided with immobilization of LBR–GFP in ER elements at contact sites with chromatin. LBR–GFP–containing ER membranes then wrapped around chromatin over the course of 2–3 min, quickly and efficiently compartmentalizing nuclear material. Expansion of the NE followed over the course of 30–80 min. Thus, selective changes in lateral mobility of LBR–GFP within the ER/NE membrane system form the basis for its localization to the inner nuclear membrane during interphase. Such changes, rather than vesiculation mechanisms, also underlie the redistribution of this molecule during NE disassembly and reformation in mitosis.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                01 July 2012
                : 23
                : 13
                : 2424-2432
                Affiliations
                Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
                University Medical Centre Utrecht
                Author notes

                *These authors are students of the Viikki Graduate School in Molecular Biosciences, University of Helsinki, Helsinki, Finland.

                1Address correspondence to: Eija Jokitalo ( Eija.Jokitalo@ 123456Helsinki.fi ).
                Article
                E10-12-0950
                10.1091/mbc.E10-12-0950
                3386207
                22573885
                e66fc5c4-7e58-4341-b6e8-7a6dce1f396a
                © 2012 Puhka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell BD; are registered trademarks of The American Society of Cell Biology.

                History
                : 08 December 2010
                : 27 April 2012
                : 03 May 2012
                Categories
                Articles
                Cell Cycle

                Molecular biology
                Molecular biology

                Comments

                Comment on this article