31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Emerging drugs of abuse: current perspectives on substituted cathinones

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Substituted cathinones are synthetic analogs of cathinone that can be considered as derivatives of phenethylamines with a beta-keto group on the side chain. They appeared in the recreational drug market in the mid-2000s and now represent a large class of new popular drugs of abuse. Initially considered as legal highs, their legal status is variable by country and is rapidly changing, with government institutions encouraging their control. Some cathinones (such as diethylpropion or pyrovalerone) have been used in a medical setting and bupropion is actually indicated for smoking cessation. Substituted cathinones are widely available from internet websites, retail shops, and street dealers. They can be sold under chemical, evocative or generic names, making their identification difficult. Fortunately, analytical methods have been developed in recent years to solve this problem. Available as powders, substituted cathinones are self-administered by snorting, oral injestion, or intravenous injection. They act as central nervous system stimulants by causing the release of catecholamines (dopamine, noradrenaline, and serotonin) and blocking their reuptake in the central and peripheral nervous system. They may also decrease dopamine and serotonin transporter function as nonselective substrates or potent blockers and may inhibit monoamine oxidase effects. Nevertheless, considerable differences have been found in the potencies of the different substituted cathinones in vitro. Desired effects reported by users include increased energy, empathy, and improved libido. Cardiovascular (tachycardia, hypertension) and psychiatric/neurological signs/symptoms (agitation, seizures, paranoia, and hallucinations) are the most common adverse effects reported. Severe toxicity signs compatible with excessive serotonin activity, such as hyperthermia, metabolic acidosis, and prolonged rhabdomyolysis, have also been observed. Reinforcing potential observed in animals predicts a high potential for addiction and abuse in users. In case of overdose, no specific antidote exists and no curative treatment has been approved by health authorities. Therefore, management of acute toxic effects is mainly extrapolated from experience with cocaine/amphetamines.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Pharmacological characterization of designer cathinones in vitro.

          Designer β-keto amphetamines (e.g. cathinones, 'bath salts' and 'research chemicals') have become popular recreational drugs, but their pharmacology is poorly characterized. We determined the potencies of cathinones to inhibit DA, NA and 5-HT transport into transporter-transfected HEK 293 cells, DA and 5-HT efflux from monoamine-preloaded cells, and monoamine receptor binding affinity. Mephedrone, methylone, ethylone, butylone and naphyrone acted as non-selective monoamine uptake inhibitors, similar to cocaine. Mephedrone, methylone, ethylone and butylone also induced the release of 5-HT, similar to 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and other entactogens. Cathinone, methcathinone and flephedrone, similar to amphetamine and methamphetamine, acted as preferential DA and NA uptake inhibitors and induced the release of DA. Pyrovalerone and 3,4-methylenedioxypyrovalerone (MDPV) were highly potent and selective DA and NA transporter inhibitors but unlike amphetamines did not evoke the release of monoamines. The non-β-keto amphetamines are trace amine-associated receptor 1 ligands, whereas the cathinones are not. All the cathinones showed high blood-brain barrier permeability in an in vitro model; mephedrone and MDPV exhibited particularly high permeability. Cathinones have considerable pharmacological differences that form the basis of their suggested classification into three groups. The predominant action of all cathinones on the DA transporter is probably associated with a considerable risk of addiction. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin.

            A large body of evidence supports the hypothesis that mesolimbic dopamine (DA) mediates, in animal models, the reinforcing effects of central nervous system stimulants such as cocaine and amphetamine. The role DA plays in mediating amphetamine-type subjective effects of stimulants in humans remains to be established. Both amphetamine and cocaine increase norepinephrine (NE) via stimulation of release and inhibition of reuptake, respectively. If increases in NE mediate amphetamine-type subjective effects of stimulants in humans, then one would predict that stimulant medications that produce amphetamine-type subjective effects in humans should share the ability to increase NE. To test this hypothesis, we determined, using in vitro methods, the neurochemical mechanism of action of amphetamine, 3,4-methylenedioxymethamphetamine (MDMA), (+)-methamphetamine, ephedrine, phentermine, and aminorex. As expected, their rank order of potency for DA release was similar to their rank order of potency in published self-administration studies. Interestingly, the results demonstrated that the most potent effect of these stimulants is to release NE. Importantly, the oral dose of these stimulants, which produce amphetamine-type subjective effects in humans, correlated with the their potency in releasing NE, not DA, and did not decrease plasma prolactin, an effect mediated by DA release. These results suggest that NE may contribute to the amphetamine-type subjective effects of stimulants in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The toxicology of bath salts: a review of synthetic cathinones.

              Synthetic cathinones have recently emerged and grown to be popular drugs of abuse. Their dramatic increase has resulted in part from sensationalized media attention as well as widespread availability on the Internet. They are often considered "legal highs" and sold as "bath salts" or "plant food" and labeled "not for human consumption" to circumvent drug abuse legislation. Cathinone is a naturally occurring beta-ketone amphetamine analogue found in the leaves of the Catha edulis plant. Synthetic cathinones are derivatives of this compound. Those that are being used as drugs of abuse include butylone, dimethylcathinone, ethcathinone, ethylone, 3- and 4-fluoromethcathinone, mephedrone, methedrone, methylenedioxypyrovalerone (MDPV), methylone, and pyrovalerone. Synthetic cathinones are phenylalkylamines derivatives, and are often termed "bk-amphetamines" for the beta-ketone moiety. They may possess both amphetamine-like properties and the ability to modulate serotonin, causing distinct psychoactive effects. Desired effects reported by users of synthetic cathinones include increased energy, empathy, openness, and increased libido. Cardiac, psychiatric, and neurological signs and symptoms are the most common adverse effects reported in synthetic cathinone users who require medical care. Deaths associated with use of these compounds have been reported. Exposure to and use of synthetic cathinones are becoming increasingly popular despite a lack of scientific research and understanding of the potential harms of these substances. The clinical similarities to amphetamines and MDMA specifically are predictable based on the chemical structure of this class of agents. More work is necessary to understand the mechanisms of action, toxicokinetics, toxicodynamics, metabolism, clinical and psychological effects as well as the potential for addiction and withdrawal of these agents.
                Bookmark

                Author and article information

                Journal
                Subst Abuse Rehabil
                Subst Abuse Rehabil
                Substance Abuse and Rehabilitation
                Dove Medical Press
                1179-8467
                2014
                26 May 2014
                : 5
                : 37-52
                Affiliations
                [1 ]Toxicology and Pharmacology Laboratory, University Hospital Centre, Caen, France
                [2 ]Centre d’Evaluation et d’Information sur la Pharmacodépendance – Addictovigilance (CEIP-A), Department of Pharmacology, University Hospital Centre, Caen, France
                Author notes
                Correspondance: Danièle Debruyne, Centre d’Evaluation et d’Information sur la Pharmacodépendance – Addictovigilance (CEIP-A), Department of Pharmacology, University Hospital Centre Côte de Nacre, 14033 Caen cedex 9, France, Tel +33 2 310 646 71, Fax +33 2 310 646 73, Email debruyne-d@ 123456chu-caen.fr
                Article
                sar-5-037
                10.2147/SAR.S37257
                4043811
                24966713
                e6732f9b-6e22-4a55-858a-db307f191ffe
                © 2014 Paillet-Loilier et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                substituted cathinones,chemistry,analysis,pharmacology,toxicology,dependence,medical care

                Comments

                Comment on this article