21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The genomic landscape of pediatric cancers: Implications for diagnosis and treatment

      ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The past decade has witnessed a major increase in our understanding of the genetic underpinnings of childhood cancer. Genomic sequencing studies have highlighted key differences between pediatric and adult cancers. Whereas many adult cancers are characterized by a high number of somatic mutations, pediatric cancers typically have few somatic mutations but a higher prevalence of germline alterations in cancer predisposition genes. Also noteworthy is the remarkable heterogeneity in the types of genetic alterations that likely drive the growth of pediatric cancers, including copy number alterations, gene fusions, enhancer hijacking events, and chromoplexy. Because most studies have genetically profiled pediatric cancers only at diagnosis, the mechanisms underlying tumor progression, therapy resistance, and metastasis remain poorly understood. We discuss evidence that points to a need for more integrative approaches aimed at identifying driver events in pediatric cancers at both diagnosis and relapse. We also provide an overview of key aspects of germline predisposition for cancer in this age group.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          THE GENOMIC LANDSCAPE OF PEDIATRIC AND YOUNG ADULT T-LINEAGE ACUTE LYMPHOBLASTIC LEUKEMIA

          Genetic alterations activating NOTCH1 signaling and T cell transcription factors, coupled with inactivation of the INK4/ARF tumor suppressors are hallmarks of T-ALL, but detailed genome-wide sequencing of large T-ALL cohorts has not been performed. Using integrated genomic analysis of 264 T-ALL cases, we identify 106 putative driver genes, half of which were not previously described in childhood T-ALL (e.g. CCND3, CTCF, MYB, SMARCA4, ZFP36L2 and MYCN). We described new mechanisms of coding and non-coding alteration, and identify 10 recurrently altered pathways, with associations between mutated genes and pathways, and stage or subtype of T-ALL. For example, NRAS/FLT3 mutations were associated with immature T-ALL, JAK3/STAT5B mutations in HOX1 deregulated ALL, PTPN2 mutations in TLX1 T-ALL, and PIK3R1/PTEN mutations in TAL1 ALL, suggesting that different signaling pathways have distinct roles according to maturational stage. This genomic landscape provides a logical framework for the development of faithful genetic models and new therapeutic approaches.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogenic Germline Variants in 10,389 Adult Cancers

            We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma

              The nuclear factor-κB (NF-κB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-κB signaling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-κB activity in cancer. Here, we show that more than two thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-κB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95-RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95-RELA fusion proteins translocated spontaneously to the nucleus to activate NF-κB target genes, and rapidly transformed neural stem cells—the cell of origin of ependymoma—to form these tumours in mice. Our data identify the first highly recurrent genetic alteration of RELA in human cancer, and the C11orf95-RELA fusion protein as a potential therapeutic target in supratentorial ependymoma.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                March 14 2019
                March 15 2019
                March 14 2019
                March 15 2019
                : 363
                : 6432
                : 1170-1175
                Article
                10.1126/science.aaw3535
                7757338
                30872516
                e67d2cd6-253c-4c02-bae8-d491cb230dac
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article