102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Organic species are an important but poorly characterized constituent of airborne particulate matter. A quantitative understanding of the organic fraction of particles (organic aerosol, OA) is necessary to reduce some of the largest uncertainties that confound the assessment of the radiative forcing of climate and air quality management policies. In recent years, aerosol mass spectrometry has been increasingly relied upon for highly time-resolved characterization of OA chemistry and for elucidation of aerosol sources and lifecycle processes. Aerodyne aerosol mass spectrometers (AMS) are particularly widely used, because of their ability to quantitatively characterize the size-resolved composition of submicron particles (PM 1). AMS report the bulk composition and temporal variations of OA in the form of ensemble mass spectra (MS) acquired over short time intervals. Because each MS represents the linear superposition of the spectra of individual components weighed by their concentrations, multivariate factor analysis of the MS matrix has proved effective at retrieving OA factors that offer a quantitative and simplified description of the thousands of individual organic species. The sum of the factors accounts for nearly 100% of the OA mass and each individual factor typically corresponds to a large group of OA constituents with similar chemical composition and temporal behavior that are characteristic of different sources and/or atmospheric processes. The application of this technique in aerosol mass spectrometry has grown rapidly in the last six years. Here we review multivariate factor analysis techniques applied to AMS and other aerosol mass spectrometers, and summarize key findings from field observations. Results that provide valuable information about aerosol sources and, in particular, secondary OA evolution on regional and global scales are highlighted. Advanced methods, for example a-priori constraints on factor mass spectra and the application of factor analysis to combined aerosol and gas phase data are discussed. Integrated analysis of worldwide OA factors is used to present a holistic regional and global description of OA. Finally, different ways in which OA factors can constrain global and regional models are discussed.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of organic aerosols in the atmosphere.

          Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fine-particulate air pollution and life expectancy in the United States.

            Exposure to fine-particulate air pollution has been associated with increased morbidity and mortality, suggesting that sustained reductions in pollution exposure should result in improved life expectancy. This study directly evaluated the changes in life expectancy associated with differential changes in fine particulate air pollution that occurred in the United States during the 1980s and 1990s. We compiled data on life expectancy, socioeconomic status, and demographic characteristics for 211 county units in the 51 U.S. metropolitan areas with matching data on fine-particulate air pollution for the late 1970s and early 1980s and the late 1990s and early 2000s. Regression models were used to estimate the association between reductions in pollution and changes in life expectancy, with adjustment for changes in socioeconomic and demographic variables and in proxy indicators for the prevalence of cigarette smoking. A decrease of 10 microg per cubic meter in the concentration of fine particulate matter was associated with an estimated increase in mean (+/-SE) life expectancy of 0.61+/-0.20 year (P=0.004). The estimated effect of reduced exposure to pollution on life expectancy was not highly sensitive to adjustment for changes in socioeconomic, demographic, or proxy variables for the prevalence of smoking or to the restriction of observations to relatively large counties. Reductions in air pollution accounted for as much as 15% of the overall increase in life expectancy in the study areas. A reduction in exposure to ambient fine-particulate air pollution contributed to significant and measurable improvements in life expectancy in the United States. 2009 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer.

              The application of mass spectrometric techniques to the real-time measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal vaporization AMS. The AMS uses aerodynamic lens inlet technology together with thermal vaporization and electron-impact mass spectrometry to measure the real-time non-refractory (NR) chemical speciation and mass loading as a function of particle size of fine aerosol particles with aerodynamic diameters between approximately 50 and 1,000 nm. The original AMS utilizes a quadrupole mass spectrometer (Q) with electron impact (EI) ionization and produces ensemble average data of particle properties. Later versions employ time-of-flight (ToF) mass spectrometers and can produce full mass spectral data for single particles. This manuscript presents a detailed discussion of the strengths and limitations of the AMS measurement approach and reviews how the measurements are used to characterize particle properties. Results from selected laboratory experiments and field measurement campaigns are also presented to highlight the different applications of this instrument. Recent instrumental developments, such as the incorporation of softer ionization techniques (vacuum ultraviolet (VUV) photo-ionization, Li+ ion, and electron attachment) and high-resolution ToF mass spectrometers, that yield more detailed information about the organic aerosol component are also described. (c) 2007 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                +1-530-7525779 , +1-530-7523394 , dkwzhang@ucdavis.edu
                Journal
                Anal Bioanal Chem
                Analytical and Bioanalytical Chemistry
                Springer-Verlag (Berlin/Heidelberg )
                1618-2642
                1618-2650
                5 October 2011
                5 October 2011
                December 2011
                : 401
                : 10
                : 3045-3067
                Affiliations
                [1 ]Department of Environmental Toxicology, University of California, 1 Shields Ave, Davis, CA 95616 USA
                [2 ]Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309 USA
                [3 ]Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO 80309 USA
                [4 ]Aerodyne Research, Inc, Billerica, MA 01821-3976 USA
                [5 ]Georgia Institute of Technology, Atlanta, GA 30332 USA
                [6 ]Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, 100029 China
                Article
                5355
                10.1007/s00216-011-5355-y
                3217143
                21972005
                e68b67a2-fb7f-4c73-a01b-2e4324012a35
                © The Author(s) 2011
                History
                : 16 June 2011
                : 21 August 2011
                : 22 August 2011
                Categories
                Review
                Custom metadata
                © Springer-Verlag 2011

                Analytical chemistry
                aerosol life cycle,bilinear factorization,aerosol sources,aerosol processes,secondary organic aerosol (soa),positive matrix factorization (pmf),primary organic aerosol (poa),aerosol mass spectrometer (ams)

                Comments

                Comment on this article