19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-speed fixed-target serial virus crystallography

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new sample-delivery method for serial X-ray crystallography exploits the full repetition rate of the X-ray free-electron laser at the LCLS facility, thus enabling efficient, high-speed data collection to solve the three-dimensional structures of viruses.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Version 1.2 of the Crystallography and NMR system.

          Version 1.2 of the software system, termed Crystallography and NMR system (CNS), for crystallographic and NMR structure determination has been released. Since its first release, the goals of CNS have been (i) to create a flexible computational framework for exploration of new approaches to structure determination, (ii) to provide tools for structure solution of difficult or large structures, (iii) to develop models for analyzing structural and dynamical properties of macromolecules and (iv) to integrate all sources of information into all stages of the structure determination process. Version 1.2 includes an improved model for the treatment of disordered solvent for crystallographic refinement that employs a combined grid search and least-squares optimization of the bulk solvent model parameters. The method is more robust than previous implementations, especially at lower resolution, generally resulting in lower R values. Other advances include the ability to apply thermal factor sharpening to electron density maps. Consistent with the modular design of CNS, these additions and changes were implemented in the high-level computing language of CNS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crystallizing membrane proteins using lipidic mesophases.

            A detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and alpha-helical and beta-barrel proteins. Its most recent successes are the human-engineered beta(2)-adrenergic and adenosine A(2A) G protein-coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase and for setting up crystallizations in manual mode. Methods for harvesting microcrystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about 1 h.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fusing structure and function: a structural view of the herpesvirus entry machinery.

              Herpesviruses are double-stranded DNA, enveloped viruses that infect host cells through fusion with either the host cell plasma membrane or endocytic vesicle membranes. Efficient infection of host cells by herpesviruses is remarkably more complex than infection by other viruses, as it requires the concerted effort of multiple glycoproteins and involves multiple host receptors. The structures of the major viral glycoproteins and a number of host receptors involved in the entry of the prototypical herpesviruses, the herpes simplex viruses (HSVs) and Epstein-Barr virus (EBV), are now known. These structural studies have accelerated our understanding of HSV and EBV binding and fusion by revealing the conformational changes that occur on virus-receptor binding, depicting potential sites of functional protein and lipid interactions, and identifying the probable viral fusogen.
                Bookmark

                Author and article information

                Journal
                Nature Methods
                Nat Meth
                Springer Nature
                1548-7091
                1548-7105
                June 19 2017
                June 19 2017
                :
                :
                Article
                10.1038/nmeth.4335
                5588887
                28628129
                e69073cc-e922-4d5e-826e-1d074fd39a3d
                © 2017
                History

                Comments

                Comment on this article