50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mammalian empathy: behavioural manifestations and neural basis

      ,
      Nature Reviews Neuroscience
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Empathy is a characteristic of all mammals that ranges from being sensitive to another's emotions to adopting their perspective. In this Review, de Waal and Preston discuss current hypotheses concerning how the emotional states of others are understood in a variety of species.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Empathy for pain involves the affective but not sensory components of pain.

          Our ability to have an experience of another's pain is characteristic of empathy. Using functional imaging, we assessed brain activity while volunteers experienced a painful stimulus and compared it to that elicited when they observed a signal indicating that their loved one--present in the same room--was receiving a similar pain stimulus. Bilateral anterior insula (AI), rostral anterior cingulate cortex (ACC), brainstem, and cerebellum were activated when subjects received pain and also by a signal that a loved one experienced pain. AI and ACC activation correlated with individual empathy scores. Activity in the posterior insula/secondary somatosensory cortex, the sensorimotor cortex (SI/MI), and the caudal ACC was specific to receiving pain. Thus, a neural response in AI and rostral ACC, activated in common for "self" and "other" conditions, suggests that the neural substrate for empathic experience does not involve the entire "pain matrix." We conclude that only that part of the pain network associated with its affective qualities, but not its sensory qualities, mediates empathy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On aims and methods of Ethology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxytocin, vasopressin, and the neurogenetics of sociality.

              There is growing evidence that the neuropeptides oxytocin and vasopressin modulate complex social behavior and social cognition. These ancient neuropeptides display a marked conservation in gene structure and expression, yet diversity in the genetic regulation of their receptors seems to underlie natural variation in social behavior, both between and within species. Human studies are beginning to explore the roles of these neuropeptides in social cognition and behavior and suggest that variation in the genes encoding their receptors may contribute to variation in human social behavior by altering brain function. Understanding the neurobiology and neurogenetics of social cognition and behavior has important implications, both clinically and for society.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Nature
                1471-003X
                1471-0048
                June 29 2017
                June 29 2017
                :
                :
                Article
                10.1038/nrn.2017.72
                28655877
                e6920869-bfe5-47a7-b0ea-a87f40b331dc
                © 2017
                History

                Comments

                Comment on this article