1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MicroRNA‑497 attenuates cerebral infarction in patients via the TLR4 and CREB signaling pathways.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to investigate the function and mechanism of microRNA‑497 (miRNA/miR‑149) in the regulation of cerebral infarction. In patients with cerebral infarction, the serum of microRNA‑497 expression was upregulated compared with that in healthy controls. In N2A cells, overexpression of miR‑497 induced cell proliferation, decreased apoptosis and caspase‑3 and caspase‑9 activities, and suppressed Bax protein expression compared with that in the negative control group. Overexpression of miR‑497 reduced inflammation factors, and suppressed the Toll‑like receptor 4 (TLR4), myeloid differentiation primary response protein MyD88 (MyD88) and nuclear factor‑κB (NF‑κB) protein expression of the N2A cells. Next, miR‑497 overexpression suppressed the protein expression of interleukin‑1 receptor associated kinase (IRAK1) and phosphorylated cyclic AMP response element binding protein (p-CREB) in the N2A cells. Following miR‑497 overexpression, TLR4 inhibitor was found to suppress the inflammation factors, suppress the TLR4, MyD88 and NF‑κB protein expression, and reduce the IRAK1 and p‑CREB protein expression of the N2A cells. Lastly, CREB inhibitor also suppressed p‑CREB protein expression, induced cell proliferation, decreased apoptosis and caspase‑3 and caspase‑9 activities, and suppressed Bax protein expression in the N2A cells following miR‑497 overexpression. Taken together, these data demonstrated that miR‑497 attenuated cerebral infarction in patients by regulating the TLR4 and CREB signaling pathways.

          Related collections

          Author and article information

          Journal
          Int J Mol Med
          International journal of molecular medicine
          Spandidos Publications
          1791-244X
          1107-3756
          Jul 2018
          : 42
          : 1
          Affiliations
          [1 ] Department of First Neurosurgery, Tangshan Worker Hospital, Tangshan, Hebei 063000, P.R. China.
          Article
          10.3892/ijmm.2018.3611
          29620142
          e6941a71-7c62-4fc8-b413-7b52b2472ba4
          History

          Comments

          Comment on this article