16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Act locally and think globally: Intracerebral testosterone implants induce seasonal-like growth of adult avian song control circuits

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is pronounced seasonal plasticity in the morphology of the neural circuits that regulate song behavior in adult songbirds, primarily in response to changes in plasma testosterone (T) levels. Most song nuclei have androgen receptors. Afferent input from the telencephalic nucleus HVc (also known as the "high vocal center") is necessary for seasonal growth of the direct efferent target nuclei RA and area X. We asked here whether T-stimulated growth of HVc is sufficient to induce growth of its efferent nuclei. Intracerebral T implants were placed unilaterally near HVc or RA in photosensitive adult male white-crowned sparrows for one month. The T implant near HVc produced significant growth of the ipsilateral (but not contralateral) HVc, RA, and area X, and increased neuronal number in the ipsilateral HVc. The T implant near RA did not produce selective growth of ipsilateral RA, HVc, or area X. Intracerebral T implants did not elevate plasma T levels, nor did they stimulate growth of two peripheral androgen sensitive targets, the syrinx and the cloacal protuberance. These results suggest that seasonal growth of the adult song circuits results from T acting directly on HVc, which then stimulates the growth of RA and area X transynaptically.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Cell death during development of the nervous system.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene.

            The in vivo biological function of a steroid receptor coactivator was assessed in mice in which the SRC-1 gene was inactivated by gene targeting. Although in both sexes the homozygous mutants were viable and fertile, target organs such as uterus, prostate, testis, and mammary gland exhibited decreased growth and development in response to steroid hormones. Expression of RNA encoding TIF2, a member of the SRC-1 family, was increased in the SRC-1 null mutant, perhaps compensating partially for the loss of SRC-1 function in target tissues. The results indicate that SRC-1 mediates steroid hormone responses in vivo and that loss of its coactivator function results in partial resistance to hormone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Seasonal plasticity in the adult brain.

              Seasonal plasticity of structure and function is a fundamental feature of nervous systems in a wide variety of animals that occupy seasonal environments. Excellent examples of seasonal brain changes are found in the avian song control system, which has become a leading model of morphological and functional plasticity in the adult CNS. The volumes of entire brain regions that control song increase dramatically in anticipation of the breeding season. These volumetric changes are induced primarily by vernal increases in circulating sex steroids and are accompanied by increases in neuronal size, number and spacing. In several species, these structural changes in the song control circuitry are associated with seasonal changes in song production and learning. Songbirds provide important insights into the mechanisms and behavioral consequences of plasticity in the adult brain.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 17 2002
                September 06 2002
                September 17 2002
                : 99
                : 19
                : 12421-12426
                Article
                10.1073/pnas.192308799
                129460
                12218180
                e69c56a0-3ff4-42a5-8085-4150624fcec7
                © 2002
                History

                Comments

                Comment on this article