Blog
About

24
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Biophysics of Chromatin Dynamics

      1 , 2

      Annual Review of Biophysics

      Annual Reviews

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nucleosomes and chromatin control eukaryotic genome accessibility and thereby regulate DNA processes, including transcription, replication, and repair. Conformational dynamics within the nucleosome and chromatin structure play a key role in this regulatory function. Structural fluctuations continuously expose internal DNA sequences and nucleosome surfaces, thereby providing transient access for the nuclear machinery. Progress in structural studies of nucleosomes and chromatin has provided detailed insight into local chromatin organization and has set the stage for recent in-depth investigations of the structural dynamics of nucleosomes and chromatin fibers. Here, we discuss the dynamic processes observed in chromatin over different length scales and timescales and review current knowledge about the biophysics of distinct structural transitions.

          Related collections

          Most cited references 163

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of the nucleosome core particle at 2.8 A resolution.

          The X-ray crystal structure of the nucleosome core particle of chromatin shows in atomic detail how the histone protein octamer is assembled and how 146 base pairs of DNA are organized into a superhelix around it. Both histone/histone and histone/DNA interactions depend on the histone fold domains and additional, well ordered structure elements extending from this motif. Histone amino-terminal tails pass over and between the gyres of the DNA superhelix to contact neighbouring particles. The lack of uniformity between multiple histone/DNA-binding sites causes the DNA to deviate from ideal superhelix geometry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Capturing chromosome conformation.

            We describe an approach to detect the frequency of interaction between any two genomic loci. Generation of a matrix of interaction frequencies between sites on the same or different chromosomes reveals their relative spatial disposition and provides information about the physical properties of the chromatin fiber. This methodology can be applied to the spatial organization of entire genomes in organisms from bacteria to human. Using the yeast Saccharomyces cerevisiae, we could confirm known qualitative features of chromosome organization within the nucleus and dynamic changes in that organization during meiosis. We also analyzed yeast chromosome III at the G1 stage of the cell cycle. We found that chromatin is highly flexible throughout. Furthermore, functionally distinct AT- and GC-rich domains were found to exhibit different conformations, and a population-average 3D model of chromosome III could be determined. Chromosome III emerges as a contorted ring.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone H4-K16 acetylation controls chromatin structure and protein interactions.

              Acetylation of histone H4 on lysine 16 (H4-K16Ac) is a prevalent and reversible posttranslational chromatin modification in eukaryotes. To characterize the structural and functional role of this mark, we used a native chemical ligation strategy to generate histone H4 that was homogeneously acetylated at K16. The incorporation of this modified histone into nucleosomal arrays inhibits the formation of compact 30-nanometer-like fibers and impedes the ability of chromatin to form cross-fiber interactions. H4-K16Ac also inhibits the ability of the adenosine triphosphate-utilizing chromatin assembly and remodeling enzyme ACF to mobilize a mononucleosome, indicating that this single histone modification modulates both higher order chromatin structure and functional interactions between a nonhistone protein and the chromatin fiber.
                Bookmark

                Author and article information

                Journal
                Annual Review of Biophysics
                Annu. Rev. Biophys.
                Annual Reviews
                1936-122X
                1936-1238
                May 06 2019
                May 06 2019
                : 48
                : 1
                : 321-345
                Affiliations
                [1 ]Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
                [2 ]Department of Physics, Biophysics Graduate Program, Ohio State Biochemistry Graduate Program, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210-1117, USA;
                Article
                10.1146/annurev-biophys-070317-032847
                © 2019

                Comments

                Comment on this article