32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biogenesis of the Inner Membrane Complex Is Dependent on Vesicular Transport by the Alveolate Specific GTPase Rab11B

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites.

          Author Summary

          Apicomplexan parasites belong to a group of protists known as alveolata that also includes ciliates and dinoflagellates. One of the few morphological similarities within this group is the presence of membranous sacs beneath the plasma membrane, called alveoli. In the case of apicomplexan parasites, alveoli are well developed and described as the Inner Membrane Complex (IMC) that serves as a scaffold for the machinery driving gliding motility and host cell invasion. Given the unique nature of this organelle we aimed to identify key factors that are involved in its formation. We identified a unique family of Rab11-GTPases in Alveolata. Using Toxoplasma gondii as a model system, we show that this small GTPase is essential for the delivery of vesicles from the Golgi to the nascent IMC of the daughter parasites. Interestingly, biogenesis of the IMC is not linked to the formation of subpellicular microtubules. We propose a model where the action of Rab11B is necessary for IMC formation.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          TreeView: an application to display phylogenetic trees on personal computers.

          R D Page (1996)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple sequence alignment with the Clustal series of programs.

            R Chenna (2003)
            The Clustal series of programs are widely used in molecular biology for the multiple alignment of both nucleic acid and protein sequences and for preparing phylogenetic trees. The popularity of the programs depends on a number of factors, including not only the accuracy of the results, but also the robustness, portability and user-friendliness of the programs. New features include NEXUS and FASTA format output, printing range numbers and faster tree calculation. Although, Clustal was originally developed to run on a local computer, numerous Web servers have been set up, notably at the EBI (European Bioinformatics Institute) (http://www.ebi.ac.uk/clustalw/).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rabs and their effectors: achieving specificity in membrane traffic.

              Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directionality to membrane traffic and couple each stage of traffic with the next along the pathway.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                July 2010
                July 2010
                29 July 2010
                : 6
                : 7
                : e1001029
                Affiliations
                [1 ]Department of Infectiology, Parasitology, University Hospital Heidelberg, Heidelberg, Germany
                [2 ]Division of Infection & Immunity and Wellcome Centre for Parasitology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
                [3 ]Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, Inserm, U567, CNRS, UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
                [4 ]School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
                [5 ]Nuffield Department of Clinical Laboratory Science, Oxford University, Oxford, United Kingdom
                Washington University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: CAN SE MM. Performed the experiments: CAN SE BJF DJPF. Analyzed the data: CAN SE GL BJF DJPF MM. Contributed reagents/materials/analysis tools: MM. Wrote the paper: CAN MM.

                Article
                10-PLPA-RA-3016R2
                10.1371/journal.ppat.1001029
                2912401
                20686666
                e6a23c8d-78cb-4104-9a75-19aa3736873e
                Agop-Nersesian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 April 2010
                : 2 July 2010
                Page count
                Pages: 15
                Categories
                Research Article
                Cell Biology
                Cell Biology/Cell Growth and Division
                Cell Biology/Morphogenesis and Cell Biology
                Infectious Diseases/Protozoal Infections
                Molecular Biology/Molecular Evolution

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article