17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disaggregation and invasion of ovarian carcinoma ascites spheroids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Malignant ascites often develops in advanced stages of ovarian carcinoma, consisting of single and aggregated tumor cells, or spheroids. Spheroids have commonly been used as tumor models to study drug efficacy, and have shown resistance to some chemotherapies and radiation. However, little is known about the adhesive or invasive capabilities of spheroids, and whether this particular cellular component of the ascites can contribute to dissemination of ovarian cancer. Here, we examined the invasive ability of ascites spheroids recovered from seven ovarian carcinoma patients and one primary peritoneal carcinoma (PPC) patient.

          Methods

          Ascites spheroids were isolated from patients, purified, and immunohistochemical analyses were performed by a pathologist to confirm diagnosis. In vitro assays were designed to quantify spheroid disaggregation on a variety of extracellular matrices and dissemination on and invasion into normal human mesothelial cell monolayers. Cell proliferation and viability were determined in each assay, and statistical significance demonstrated by the student's t-test.

          Results

          Spheroids from all of the patients' ascites samples disaggregated on extracellular matrix components, with the PPC spheroids capable of complete disaggregation on type I collagen. Additionally, all of the ascites spheroid samples adhered to and disaggregated on live human mesothelial cell monolayers, typically without invading them. However, the PPC ascites spheroids and one ovarian carcinoma ascites spheroid sample occasionally formed invasive foci in the mesothelial cell monolayers, suggestive of a more invasive phenotype.

          Conclusion

          We present here in vitro assays using ascites spheroids that imitate the spread of ovarian cancer in vivo. Our results suggest that systematic studies of the ascites cellular content are necessary to understand the biology of ovarian carcinoma.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.

          Tumor ascites fluids from guinea pigs, hamsters, and mice contain activity that rapidly increases microvascular permeability. Similar activity is also secreted by these tumor cells and a variety of other tumor cell lines in vitro. The permeability-increasing activity purified from either the culture medium or ascites fluid of one tumor, the guinea pig line 10 hepatocarcinoma, is a 34,000- to 42,000-dalton protein distinct from other known permeability factors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture.

            I J Fidler (1990)
            The process of metastasis is not random. Rather, it consists of a series of linked, sequential steps that must be completed by tumor cells if a metastasis is to develop. Although some of the steps in this process contain stochastic elements, as a whole, metastasis favors the survival and growth of a few subpopulations of cells that preexist within the parent neoplasm. Moreover, metastases can have a clonal origin, and different metastases can originate from the proliferation of single cells. The outcome of metastasis depends on the interaction of metastatic cells with different organ environments. Organ-specific metastases have been demonstrated in a variety of experimental tumor systems. Moreover, we have found tumor growth that is specific to a particular site within one organ. Whether the same conclusions can be reached for human cancers remained unanswered until very recently. Studies from our laboratory and from others have shown that the implantation of human cancer cells derived from surgical specimens into correct anatomical sites of nude mice can provide a suitable model of metastasis of human tumors. Clonal analysis of a human renal carcinoma, colon carcinomas, and melanomas has revealed that these tumors are indeed heterogeneous for metastatic properties, an observation made only after orthotopic implantation. Thus, growth in the environment of specific organs can be selective and the environment per se influences this process. While it is clear that vascularity and local immunity can facilitate or retard tumor growth, we have concentrated on understanding how damage to an organ and the subsequent repair process can facilitate tumor cell proliferation. Accelerated growth of human colon cancer cells was found in hepatectomized nude mice, whereas accelerated growth of human renal cancer cells was found in nephrectomized nude mice. These data suggest that systemic physiological signals can be recognized by neoplastic cells presumably by mechanisms similar to those shared by their normal cell counterparts. In summary, the critical factors that regulate metastasis are the intrinsic properties of metastatic cells and host factors involved in homeostasis. The recent increase in our understanding of metastasis should provide important leads for developing more effective approaches to the treatment of disseminated cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers.

              Ovarian carcinoma cells form multicellular aggregates, or spheroids, in the peritoneal cavity of patients with advanced disease. The current paradigm that ascites spheroids are non-adhesive leaves their contribution to ovarian carcinoma dissemination undefined. Here, spheroids obtained from ovarian carcinoma patients' ascites were characterized for their ability to adhere to molecules encountered in the peritoneal cavity, with the goal of establishing their potential to contribute to ovarian cancer spread. Spheroids were recovered from the ascites fluid of 11 patients with stage III or stage IV ovarian carcinoma. Adhesion assays to extracellular matrix (ECM) proteins and human mesothelial cell monolayers were performed for each of the ascites spheroid samples. Subsequently, inhibition assays were performed to identify the cell receptors involved. Most ascites samples adhered moderately to fibronectin and type I collagen, with reduced adhesion to type IV collagen and laminin. Monoclonal antibodies against the beta1 integrin subunit partially inhibited this adhesion. Ascites spheroids also adhered to hyaluronan. Additionally, spheroids adhered to live, but not fixed, human mesothelial cell monolayers, and this adhesion was partially mediated by beta1 integrins. The cellular content of the ascites fluid has often been considered non-adhesive, but our findings are the first to suggest that patient-derived ascites spheroids can adhere to mesothelial extracellular matrix via beta1 integrins, indicating that spheroids should not be ignored in the dissemination of ovarian cancer.
                Bookmark

                Author and article information

                Journal
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                2006
                24 January 2006
                : 4
                : 6
                Affiliations
                [1 ]Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, University of Minnesota, Minneapolis, Minnesota, USA
                [2 ]Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology , University of Minnesota, Minneapolis, Minnesota, USA
                Article
                1479-5876-4-6
                10.1186/1479-5876-4-6
                1397876
                16433903
                e6ac074e-f55f-4d48-bb32-13c28ae9eeef
                Copyright © 2006 Burleson et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 December 2005
                : 24 January 2006
                Categories
                Research

                Medicine
                Medicine

                Comments

                Comment on this article