Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial activity and chemical composition of essential oil from Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso collected in South-West Sardinia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to evaluate the chemical composition and the antimicrobial activity of essential oils of Helichrysum microphyllum subsp. tyrrhenicum collected in four different stations in South -Western Sardinia.

          The composition of the essential oils was determined by gas chromatography and gas chromatography/mass spectrometry. The oil samples showed different chromatographic profiles. The oil of the station 4 revealed the presence of significant amount of neryl acetate (33.6%); in oils from stations 1 and 2 we found γ-curcumene (28%) and in station 3 γ-curcumene (12%) and linalool (11%), while there was no trace of neryl acetate. Standard microbiological assays demonstrated that essential oils obtained by plants collected in station 1 and 2, very rich in curcumene, showed an interesting anticandidal activity, dose- and time-dependent, which is enhanced by sub-inhibitory concentrations of chitosan.

          Our results suggest that the essential oil of Helichrysum microphyllum subsp. tyrrhenicum, associated with chitosan in innovative formulations, could be considered as a therapeutic alternative in the treatment of Candida opportunistic infections. The results of this study shows that the chemotypization of the species examined could lead to their targeted clinical use, in a concept of a rational scientific aromatherapy.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Chitosan as antimicrobial agent: applications and mode of action.

          Chitosan, a hydrophilic biopolymer industrially obtained by N-deacetylation of chitin, can be applied as an antimicrobial agent. The current review of 129 references describes the biological activity of several chitosan derivatives and the modes of action that have been postulated in the literature. It highlights the applications of chitosan as an antimicrobial agent against fungi, bacteria, and viruses and as an elicitor of plant defense mechanisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial properties of chitosan and mode of action: a state of the art review.

            Owing to its high biodegradability, and nontoxicity and antimicrobial properties, chitosan is widely-used as an antimicrobial agent either alone or blended with other natural polymers. To broaden chitosan's antimicrobial applicability, comprehensive knowledge of its activity is necessary. The paper reviews the current trend of investigation on antimicrobial activities of chitosan and its mode of action. Chitosan-mediated inhibition is affected by several factors can be classified into four types as intrinsic, environmental, microorganism and physical state, according to their respective roles. In this review, different physical states are comparatively discussed. Mode of antimicrobial action is discussed in parts of the active compound (chitosan) and the target (microorganisms) collectively and independently in same complex. Finally, the general antimicrobial applications of chitosan and perspectives about future studies in this field are considered. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chitosan and its antimicrobial potential – a critical literature survey

              Summary Chitosan, an aminopolysaccharide biopolymer, has a unique chemical structure as a linear polycation with a high charge density, reactive hydroxyl and amino groups as well as extensive hydrogen bonding. It displays excellent biocompatibility, physical stability and processability. The term ‘chitosan’ describes a heterogenous group of polymers combining a group of physicochemical and biological characteristics, which allow for a wide scope of applications that are both fascinating and as yet uncharted. The increased awareness of the potentials and industrial value of this biopolymer lead to its utilization in many applications of technical interest, and increasingly in the biomedical arena. Although not primarily used as an antimicrobial agent, its utility as an ingredient in both food and pharmaceutical formulations lately gained more interest, when a scientific understanding of at least some of the pharmacological activities of this versatile carbohydrate began to evolve. However, understanding the various factors that affect its antimicrobial activity has become a key issue for a better usage and a more efficient optimization of chitosan formulations. Moreover, the use of chitosan in antimicrobial systems should be based on sufficient knowledge of the complex mechanisms of its antimicrobial mode of action, which in turn would help to arrive at an appreciation of its entire antimicrobial potential.
                Bookmark

                Author and article information

                Contributors
                Journal
                Saudi J Biol Sci
                Saudi J Biol Sci
                Saudi Journal of Biological Sciences
                Elsevier
                1319-562X
                2213-7106
                10 April 2018
                July 2019
                10 April 2018
                : 26
                : 5
                : 897-905
                Affiliations
                [a ]Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
                [b ]Institute of Biomolecular Chemistry, National Research Council (CNR), 07100 Sassari, Italy
                [c ]Department od Internal Medicine, Azienda Sanitaria Provinciale di Enna, 94100 Enna, Italy
                [d ]Department of Natural and Land Sciences, University of Sassari, 07100 Sassari, Italy
                Author notes
                [* ]Corresponding author at: Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy. julianoc@ 123456uniss.it
                Article
                S1319-562X(18)30092-5
                10.1016/j.sjbs.2018.04.009
                6601027
                31303817
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                Categories
                Article

                Comments

                Comment on this article