158
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunomodulatory therapies, targeting the immune checkpoint receptor-ligand complex PD-1/PD-L1 have shown promising results in early phase clinical trials in solid malignancies, including carcinomas of the head and neck. In this context, PD-L1 protein expression has been proposed as a potentially valuable predictive marker. In the present study, expression of PD-L1 and PD-1 was evaluated by immunohistochemistry in 80 patients with predominantly HPV-negative oral squamous cell carcinomas and associated nodal metastasis. In addition, CD274/PD-L1 gene copy number status was assessed by fluorescence in situ hybridization analysis. PD-L1 expression was detected in 36/80 (45%) cases and concordance of PD-L1 expression in primary tumor and corresponding nodal metastasis was present in only 20/28 (72%) cases. PD-1 expression was found in tumor-infiltrating lymphocytes (TILs) but not in tumor cells. CD274/PD-L1 gene amplification was detected in 19% of cases, with high level PD-L1 amplification present in 12/80 (15%), and low level amplification in 3/80 (4%). Interestingly, CD274/PD-L1 gene amplification was associated with positive PD-L1 immunostaining in only 73% of cases. PD-L1 copy number status was concordant in primary tumor and associated metastases. Clinically, PD-L1 tumor immunopositivity was associated with a higher risk for nodal metastasis at diagnosis, overall tumor related death und recurrence. Based on our findings we propose to include PD-L1 copy number status in addition to protein status in screening programs for future clinical trials with immunotherapeutic strategies targeting the PD-1/PD-L1 axis.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.

            PD-1 is a receptor of the Ig superfamily that negatively regulates T cell antigen receptor signaling by interacting with the specific ligands (PD-L) and is suggested to play a role in the maintenance of self-tolerance. In the present study, we examined possible roles of the PD-1/PD-L system in tumor immunity. Transgenic expression of PD-L1, one of the PD-L, in P815 tumor cells rendered them less susceptible to the specific T cell antigen receptor-mediated lysis by cytotoxic T cells in vitro, and markedly enhanced their tumorigenesis and invasiveness in vivo in the syngeneic hosts as compared with the parental tumor cells that lacked endogenous PD-L. Both effects could be reversed by anti-PD-L1 Ab. Survey of murine tumor lines revealed that all of the myeloma cell lines examined naturally expressed PD-L1. Growth of the myeloma cells in normal syngeneic mice was inhibited significantly albeit transiently by the administration of anti-PD-L1 Ab in vivo and was suppressed completely in the syngeneic PD-1-deficient mice. These results suggest that the expression of PD-L1 can serve as a potent mechanism for potentially immunogenic tumors to escape from host immune responses and that blockade of interaction between PD-1 and PD-L may provide a promising strategy for specific tumor immunotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma.

              Classical Hodgkin lymphoma (cHL) and mediastinal large B-cell lymphoma (MLBCL) are lymphoid malignancies with certain shared clinical, histologic, and molecular features. Primary cHLs and MLBCLs include variable numbers of malignant cells within an inflammatory infiltrate, suggesting that these tumors escape immune surveillance. Herein, we integrate high-resolution copy number data with transcriptional profiles and identify the immunoregulatory genes, PD-L1 and PD-L2, as key targets at the 9p24.1 amplification peak in HL and MLBCL cell lines. We extend these findings to laser-capture microdissected primary Hodgkin Reed-Sternberg cells and primary MLBCLs and find that programmed cell death-1 (PD-1) ligand/9p24.1 amplification is restricted to nodular sclerosing HL, the cHL subtype most closely related to MLBCL. Using quantitative immunohistochemical methods, we document the association between 9p24.1 copy number and PD-1 ligand expression in primary tumors. In cHL and MLBCL, the extended 9p24.1 amplification region also included the Janus kinase 2 (JAK2) locus. Of note, JAK2 amplification increased protein expression and activity, specifically induced PD-1 ligand transcription and enhanced sensitivity to JAK2 inhibition. Therefore, 9p24.1 amplification is a disease-specific structural alteration that increases both the gene dosage of PD-1 ligands and their induction by JAK2, defining the PD-1 pathway and JAK2 as complementary rational therapeutic targets.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                15 March 2016
                22 February 2016
                : 7
                : 11
                : 12024-12034
                Affiliations
                1 Institute of Pathology, Technical University of Munich, Munich, Germany
                2 Institute of Pathology, University of Bern, Bern, Switzerland
                3 Institute of Medical Statistics and Epidemiology, Technical University of Munich, Munich, Germany
                4 Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
                5 National Center of Tumor Diseases (NCT), Heidelberg, Germany
                6 German Cancer Consortium (DKTK), Heidelberg, Germany
                Author notes
                Correspondence to: Katja Specht, katja.specht@ 123456tum.de
                Article
                7593
                10.18632/oncotarget.7593
                4914266
                26918453
                e6cd2f0f-4804-4085-ab6f-fbe0c39fbacd
                Copyright: © 2016 Straub et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 January 2016
                : 30 January 2016
                Categories
                Research Paper: Pathology

                Oncology & Radiotherapy
                pd-l1,pd-1,oral squamous cell carcinoma,fluorescence in situ hybridization,gene amplification,pathology section

                Comments

                Comment on this article