22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long non-coding RNAs in anti-cancer drug resistance

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemotherapy is one of the basic treatments for cancers; however, drug resistance is mainly responsible for the failure of clinical treatment. The mechanism of drug resistance is complicated because of interaction among various factors including drug efflux, DNA damage repair, apoptosis and targets mutation. Long non-coding RNAs (lncRNAs) have been a focus of research in the field of bioscience, and the latest studies have revealed that lncRNAs play essential roles in drug resistance in breast cancer, gastric cancer and lung cancer, et al. Dysregulation of multiple targets and pathways by lncRNAs results in the occurrence of chemoresistance. In this review, we will discuss the mechanisms underlying lncRNA-mediated resistance to chemotherapy and the therapeutic potential of lncRNAs in future cancer treatment.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Current Challenges in Cancer Treatment.

          In this review, we highlight the current concepts and discuss some of the current challenges and future prospects in cancer therapy. We frequently use the example of lung cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling.

            Chemotherapy is a reasonable alternative to cystectomy in patients with invasive and advanced bladder cancer. However, bladder cancer cells often develop drug resistance to these therapies, and ~ 50% of patients with advanced bladder cancer do not respond to chemotherapy. Recent studies have shown that long non-coding RNA (lncRNA) is involved in the development of chemoresistance. Here we investigated the role of the urothelial cancer-associated 1 (UCA1) lncRNA in cisplatin resistance during chemotherapy for bladder cancer. We showed that cisplatin-based chemotherapy results in up-regulation of UCA1 expression in patients with bladder cancer. Similarly, UCA1 levels are increased in cisplatin-resistant bladder cancer cells. Over-expression of UCA1 significantly increases the cell viability during cisplatin treatment, whereas UCA1 knockdown reduces the cell viability during cisplatin treatment. UCA1 inhibition also partially overcomes drug resistance in cisplatin-resistant T24 cells. Furthermore, we showed that UCA1 positively regulates expression of wingless-type MMTV integration site family member 6 (Wnt6) in human bladder cancer cell lines. UCA1 and Wnt6 expression is also positively correlated in vivo. Up-regulation of UCA1 activates Wnt signaling in a Wnt6-dependent manner. We finally demonstrate that UCA1 increases the cisplatin resistance of bladder cancer cells by enhancing the expression of Wnt6, and thus represents a potential target to overcome chemoresistance in bladder cancer. © 2014 FEBS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Long Noncoding RNA HOTAIR Contributes to Cisplatin Resistance of Human Lung Adenocarcinoma Cells via downregualtion of p21WAF1/CIP1 Expression

              HOTAIR, a long intervening non-coding RNA (lincRNA), associates with the Polycomb Repressive Complex 2 (PRC2) and is reported to reprogram chromatin organization and promote tumor progression. However, little is known about the roles of this gene in the development of chemoresistance phenotype of lung adenocarcinoma (LAD). Thus, we investigated the involvement of HOTAIR in the resistance of LAD cells to cisplatin. In this study, we show that HOTAIR expression was significantly upregulated in cisplatin-resistant A549/DDP cells compared with in parental A549 cells. Knockdown of HOTAIR by RNA interference could resensitize the responses of A549/DDP cells to cisplatin both in vitro and in vivo. In contrast, overexpression of HOTAIR could decrease the sensitivity of A549 and SPC-A1 cells to cisplatin. We also found that the siRNA/HOTAIR1-mediated chemosensivity enhancement was associated with inhibition of cell proliferation, induction of G0/G1 cell-cycle arrest and apoptosis enhancement through regulation of p21WAF1/CIP1 (p21) expression. Also, pcDNA/p21or siRNA/p21 could mimic the effects of siRNA/HOTAIR1 or pcDNA/HOTAIR on the sensitivity of LAD cells to cisplatin. Importantly, siRNA/p21 or pcDNA/p21 could partially rescue the effects of siRNA/HOTAIR1 or pcDNA/HOTAIR on both p21 expression and cisplatin sensitivity in LAD cells. Further, HOTAIR was observed to be significantly downregulated in cisplatin-responding LAD tissues, and its expression was inversely correlated with p21 mRNA expression. Taken together, our findings suggest that upregulation of HOTAIR contributes to the cisplatin resistance of LAD cells, at least in part, through the regulation of p21 expression.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                3 January 2017
                4 October 2016
                : 8
                : 1
                : 1925-1936
                Affiliations
                1 Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
                2 Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas, United States of America
                Author notes
                Correspondence to: Zhao-Xia Wang, zhaoxiawang88@ 123456hotmail.com
                Article
                12461
                10.18632/oncotarget.12461
                5352108
                27713133
                e6d8e751-3d99-4af2-bb80-24f888d1cfa9
                Copyright: © 2017 Chen et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 May 2016
                : 16 September 2016
                Categories
                Review

                Oncology & Radiotherapy
                long non-coding rnas,cancer,drug resistance,chemotherapy,targets
                Oncology & Radiotherapy
                long non-coding rnas, cancer, drug resistance, chemotherapy, targets

                Comments

                Comment on this article