14
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Therapeutics and Clinical Risk Management (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of clinical studies, outcomes and safety in all therapeutic areas and surgical intervention areas. Sign up for email alerts here.

      34,006 Monthly downloads/views I 2.755 Impact Factor I 4.5 CiteScore I 1.0 Source Normalized Impact per Paper (SNIP) I 0.598 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shear wave elastography imaging for assessing the chronic pathologic changes in advanced diabetic kidney disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The assessment of the grade of renal fibrosis in diabetic kidney disease (DKD) requires renal biopsy, which may be associated with certain risks. To assess the severity of chronic pathologic changes in DKD, we performed a quantitative analysis of renal parenchymal stiffness in advanced DKD, using shear wave elastography (SWE) imaging.

          Patients and methods

          Twenty-nine diabetic patients with chronic kidney disease (CKD) grades 3–4 due to DKD, and 23 healthy subjects were enrolled. Combined conventional ultrasound and SWE imaging were performed on all participants. The length, width, and cortical thickness and stiffness were recorded for each kidney.

          Results

          Cortical thickness was lower in patients with DKD than in healthy subjects (13.8±2.2 vs 14.8±1.6 mm; P=0.002) and in DKD patients with CKD grade 4 than in those with grade 3 (13.0±3.5 vs 14.7±2.1 mm; P<0.001). Cortical stiffness was greater in patients with DKD than in healthy subjects (23.72±14.33 vs 9.02±2.42 kPa; P<0.001), in DKD patients with CKD grade 4 than in those with grade 3 (30.4±16.2 vs 14.6±8.1 kPa; P<0.001), and in DKD patients with CKD grade 3b, than in those with CKD grade 3a (15.7±6.7 vs 11.0±4.2 kPa; P=0.03). Daily proteinuria was higher in DKD patients with CKD grade 4 than in those with grade 3 (5.52±0.96 vs 1.13±0.72; P=0.001), and in DKD patients with CKD grade 3b, than in those with CKD grade 3a (1.59±0.59 vs 0.77±0.48; P<0.001). Cortical stiffness was inversely correlated with the estimated glomerular filtration rate ( r=−0.65, P<0.001) and with cortical thickness ( r=−0.43, P<0.001) in patients with DKD.

          Conclusions

          In patients with advanced DKD, SWE imaging may be utilized as a simple and practical method for quantitative evaluation of the chronic morphological changes and for the differentiation between CKD grades.

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease.

          (2007)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetic nephropathy: diagnosis, prevention, and treatment.

            Diabetic nephropathy is the leading cause of kidney disease in patients starting renal replacement therapy and affects approximately 40% of type 1 and type 2 diabetic patients. It increases the risk of death, mainly from cardiovascular causes, and is defined by increased urinary albumin excretion (UAE) in the absence of other renal diseases. Diabetic nephropathy is categorized into stages: microalbuminuria (UAE >20 microg/min and or =200 microg/min). Hyperglycemia, increased blood pressure levels, and genetic predisposition are the main risk factors for the development of diabetic nephropathy. Elevated serum lipids, smoking habits, and the amount and origin of dietary protein also seem to play a role as risk factors. Screening for microalbuminuria should be performed yearly, starting 5 years after diagnosis in type 1 diabetes or earlier in the presence of puberty or poor metabolic control. In patients with type 2 diabetes, screening should be performed at diagnosis and yearly thereafter. Patients with micro- and macroalbuminuria should undergo an evaluation regarding the presence of comorbid associations, especially retinopathy and macrovascular disease. Achieving the best metabolic control (A1c 1.0 g/24 h and increased serum creatinine), using drugs with blockade effect on the renin-angiotensin-aldosterone system, and treating dyslipidemia (LDL cholesterol <100 mg/dl) are effective strategies for preventing the development of microalbuminuria, in delaying the progression to more advanced stages of nephropathy and in reducing cardiovascular mortality in patients with type 1 and type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics.

              Shear wave elasticity imaging (SWEI) is a new approach to imaging and characterizing tissue structures based on the use of shear acoustic waves remotely induced by the radiation force of a focused ultrasonic beam. SWEI provides the physician with a virtual "finger" to probe the elasticity of the internal regions of the body. In SWEI, compared to other approaches in elasticity imaging, the induced strain in the tissue can be highly localized, because the remotely induced shear waves are attenuated fully within a very limited area of tissue in the vicinity of the focal point of a focused ultrasound beam. SWEI may add a new quality to conventional ultrasonic imaging or magnetic resonance imaging. Adding shear elasticity data ("palpation information") by superimposing color-coded elasticity data over ultrasonic or magnetic resonance images may enable better differentiation of tissues and further enhance diagnosis. This article presents a physical and mathematical basis of SWEI with some experimental results of pilot studies proving feasibility of this new ultrasonic technology. A theoretical model of shear oscillations in soft biological tissue remotely induced by the radiation force of focused ultrasound is described. Experimental studies based on optical and magnetic resonance imaging detection of these shear waves are presented. Recorded spatial and temporal profiles of propagating shear waves fully confirm the results of mathematical modeling. Finally, the safety of the SWEI method is discussed, and it is shown that typical ultrasonic exposure of SWEI is significantly below the threshold of damaging effects of focused ultrasound.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                2016
                07 November 2016
                : 12
                : 1615-1622
                Affiliations
                [1 ]Faculty of Medicine in the Galilee, Bar-Ilan University, Safed
                [2 ]Department of Nephrology and Hypertension, Peritoneal Dialysis Unit – Galilee Medical Center
                [3 ]Department of Radiology, Galilee Medical Center, Nahariya
                [4 ]The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
                [5 ]Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
                Author notes
                Correspondence: Kamal Hassan, Department of Nephrology and Hypertension, Peritoneal Dialysis Unit – Galilee Medical Center, PO Box 21, Nahariya 22100, Israel, Tel +972 5 0788 7913, Fax +972 4 910 7482, Email drkamalh@ 123456hotmail.com
                Article
                tcrm-12-1615
                10.2147/TCRM.S118465
                5106220
                27853373
                e6e6622f-6143-4d33-a2ee-43f2c4cfd0d1
                © 2016 Hassan et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Medicine
                diabetic kidney disease,shear wave,elastography,cortical stiffness
                Medicine
                diabetic kidney disease, shear wave, elastography, cortical stiffness

                Comments

                Comment on this article