5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Making rare events typical in Markovian open quantum systems

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large dynamical fluctuations - atypical realizations of the dynamics sustained over long periods of time - can play a fundamental role in determining the properties of collective behavior of both classical and quantum non-equilibrium systems. Rare dynamical fluctuations, however, occur with a probability that often decays exponentially in their time extent, thus making them difficult to be directly observed and exploited in experiments. Here, using methods from dynamical large deviations, we explain how rare dynamics of a given (Markovian) open quantum system can always be obtained from the typical realizations of an alternative (also Markovian) system. This equivalence can be used to engineer and control open quantum systems with a desired dynamical response "on demand". We illustrate these ideas by studying the photon-emission behaviour of a three-qubit system which displays a sharp dynamical crossover between active and inactive dynamical phases.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Observation of many-body localization of interacting fermions in a quasi-random optical lattice

          We experimentally observe many-body localization of interacting fermions in a one-dimensional quasi-random optical lattice. We identify the many-body localization transition through the relaxation dynamics of an initially-prepared charge density wave. For sufficiently weak disorder the time evolution appears ergodic and thermalizing, erasing all remnants of the initial order. In contrast, above a critical disorder strength a significant portion of the initial ordering persists, thereby serving as an effective order parameter for localization. The stationary density wave order and the critical disorder value show a distinctive dependence on the interaction strength, in agreement with numerical simulations. We connect this dependence to the ubiquitous logarithmic growth of entanglement entropy characterizing the generic many-body localized phase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantum simulation of frustrated Ising spins with trapped ions.

            A network is frustrated when competing interactions between nodes prevent each bond from being satisfied. This compromise is central to the behaviour of many complex systems, from social and neural networks to protein folding and magnetism. Frustrated networks have highly degenerate ground states, with excess entropy and disorder even at zero temperature. In the case of quantum networks, frustration can lead to massively entangled ground states, underpinning exotic materials such as quantum spin liquids and spin glasses. Here we realize a quantum simulation of frustrated Ising spins in a system of three trapped atomic ions, whose interactions are precisely controlled using optical forces. We study the ground state of this system as it adiabatically evolves from a transverse polarized state, and observe that frustration induces extra degeneracy. We also measure the entanglement in the system, finding a link between frustration and ground-state entanglement. This experimental system can be scaled to simulate larger numbers of spins, the ground states of which (for frustrated interactions) cannot be simulated on a classical computer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An Open-System Quantum Simulator with Trapped Ions

              The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating the systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we report the first realization of a toolbox for simulating an open quantum system with up to five qubits. Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate this engineering by the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.
                Bookmark

                Author and article information

                Journal
                29 November 2017
                Article
                1711.10951
                e6ed0e1c-eb2b-4c87-97a7-cd55634bdfad

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                7 pages, 3 figures
                cond-mat.stat-mech quant-ph

                Comments

                Comment on this article