+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.

          Related collections

          Most cited references317

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.

          Apoptosis induced by TNF-receptor I (TNFR1) is thought to proceed via recruitment of the adaptor FADD and caspase-8 to the receptor complex. TNFR1 signaling is also known to activate the transcription factor NF-kappa B and promote survival. The mechanism by which this decision between cell death and survival is arbitrated is not clear. We report that TNFR1-induced apoptosis involves two sequential signaling complexes. The initial plasma membrane bound complex (complex I) consists of TNFR1, the adaptor TRADD, the kinase RIP1, and TRAF2 and rapidly signals activation of NF-kappa B. In a second step, TRADD and RIP1 associate with FADD and caspase-8, forming a cytoplasmic complex (complex II). When NF-kappa B is activated by complex I, complex II harbors the caspase-8 inhibitor FLIP(L) and the cell survives. Thus, TNFR1-mediated-signal transduction includes a checkpoint, resulting in cell death (via complex II) in instances where the initial signal (via complex I, NF-kappa B) fails to be activated.
            • Record: found
            • Abstract: found
            • Article: not found

            RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates.

            Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
              • Record: found
              • Abstract: found
              • Article: not found

              Tertiary lymphoid structures in the era of cancer immunotherapy

              Tertiary lymphoid structures (TLSs) are ectopic lymphoid organs that develop in non-lymphoid tissues at sites of chronic inflammation including tumours. Key common characteristics between secondary lymphoid organogenesis and TLS neogenesis have been identified. TLSs exist under different maturation states in tumours, culminating in germinal centre formation. The mechanisms that underlie the role of TLSs in the adaptive antitumour immune response are being deciphered. The description of the correlation between TLS presence and clinical benefit in patients with cancer, suggesting that TLSs could be a prognostic and predictive factor, has drawn strong interest into investigating the role of TLSs in tumours. A current major challenge is to exploit TLSs to promote lymphocyte infiltration, activation by tumour antigens and differentiation to increase the antitumour immune response. Several approaches are being developed using chemokines, cytokines, antibodies, antigen-presenting cells or synthetic scaffolds to induce TLS formation. Strategies aiming to induce TLS neogenesis in immune-low tumours and in immune-high tumours, in this case, in combination with therapeutic agents dampening the inflammatory environment and/or with immune checkpoint inhibitors, represent promising avenues for cancer treatment.

                Author and article information

                Signal Transduct Target Ther
                Signal Transduct Target Ther
                Signal Transduction and Targeted Therapy
                Nature Publishing Group UK (London )
                21 September 2020
                21 September 2020
                : 5
                : 209
                [1 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, , Sichuan University, and Collaborative Innovation Center for Biotherapy, ; Chengdu, China
                [2 ]GRID grid.63368.38, ISNI 0000 0004 0445 0041, Immunobiology and Transplant Science Center, Houston Methodist Hospital, ; Houston, TX 77030 USA
                Author information
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                : 6 June 2020
                : 25 August 2020
                : 31 August 2020
                Funded by: FundRef https://doi.org/10.13039/501100002855, Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology);
                Award ID: 2016YFA0502203, 2016YFA0502201,2019YFA0110201, 2019YFA0110203, 2018YFE0204500 and 2018YFC1004601
                Award ID: 2019YFA0110203
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 91740111 and 81871232
                Award ID: 31870881
                Award Recipient :
                Funded by: 1.3.5 Project of disciplines of excellence, West China Hospital, Sichuan University.
                Funded by: Ministry of Science and Technology of the People’s Republic of China (Chinese Ministry of Science and Technology)
                Review Article
                Custom metadata
                © The Author(s) 2020

                molecular medicine,translational immunology
                molecular medicine, translational immunology


                Comment on this article