10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute Kidney Injury Predicts Mortality after Charcoal Burning Suicide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A paucity of literature exists on risk factors for mortality in charcoal burning suicide. In this observational study, we analyzed the data of 126 patients with charcoal burning suicide that seen between 2002 and 2013. Patients were grouped according to status of renal damage as acute kidney injury (N = 49) or non-acute kidney injury (N = 77). It was found that patients with acute kidney injury suffered severer complications such as respiratory failure (P = 0.002), myocardial injury (P = 0.049), hepatic injury (P < 0.001), rhabdomyolysis (P = 0.045) and out-of-hospital cardiac arrest (P = 0.028) than patients without acute kidney injury. Moreover, patients with acute kidney injury suffered longer hospitalization duration (16.9 ± 18.3 versus 10.7 ± 10.9, P = 0.002) and had higher mortality rate (8.2% versus 0%, P = 0.011) than patients without injury. In a multivariate Cox regression model, it was demonstrated that serum creatinine level (P = 0.019) and heart rate (P = 0.022) were significant risk factors for mortality. Finally, Kaplan-Meier analysis revealed that patients with acute kidney injury suffered lower cumulative survival than without injury (P = 0.016). In summary, the overall mortality rate of charcoal burning suicide population was 3.2%, and acute kidney injury was a powerful predictor of mortality. Further studies are warranted.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Pathophysiology of acute kidney injury.

          Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia, or nephrotoxicity. An underlying feature is a rapid decline in glomerular filtration rate (GFR) usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or chronic kidney disease (CKD) patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future. © 2012 American Physiological Society. Compr Physiol 2:1303-1353, 2012.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperbaric oxygen for acute carbon monoxide poisoning.

            Patients with acute carbon monoxide poisoning commonly have cognitive sequelae. We conducted a double-blind, randomized trial to evaluate the effect of hyperbaric-oxygen treatment on such cognitive sequelae. We randomly assigned patients with symptomatic acute carbon monoxide poisoning in equal proportions to three chamber sessions within a 24-hour period, consisting of either three hyperbaric-oxygen treatments or one normobaric-oxygen treatment plus two sessions of exposure to normobaric room air. Oxygen treatments were administered from a high-flow reservoir through a face mask that prevented rebreathing or by endotracheal tube. Neuropsychological tests were administered immediately after chamber sessions 1 and 3, and 2 weeks, 6 weeks, 6 months, and 12 months after enrollment. The primary outcome was cognitive sequelae six weeks after carbon monoxide poisoning. The trial was stopped after the third of four scheduled interim analyses, at which point there were 76 patients in each group. Cognitive sequelae at six weeks were less frequent in the hyperbaric-oxygen group (19 of 76 [25.0 percent]) than in the normobaric-oxygen group (35 of 76 [46.1 percent], P=0.007), even after adjustment for cerebellar dysfunction and for stratification variables (adjusted odds ratio, 0.45 [95 percent confidence interval, 0.22 to 0.92]; P=0.03). The presence of cerebellar dysfunction before treatment was associated with the occurrence of cognitive sequelae (odds ratio, 5.71 [95 percent confidence interval, 1.69 to 19.31]; P=0.005) and was more frequent in the normobaric-oxygen group (15 percent vs. 4 percent, P=0.03). Cognitive sequelae were less frequent in the hyperbaric-oxygen group at 12 months, according to the intention-to-treat analysis (P=0.04). Three hyperbaric-oxygen treatments within a 24-hour period appeared to reduce the risk of cognitive sequelae 6 weeks and 12 months after acute carbon monoxide poisoning. Copyright 2002 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Practice recommendations in the diagnosis, management, and prevention of carbon monoxide poisoning.

              Carbon monoxide (CO) poisoning is common in modern society, resulting in significant morbidity and mortality in the United States annually. Over the past two decades, sufficient information has been published about carbon monoxide poisoning in the medical literature to draw firm conclusions about many aspects of the pathophysiology, diagnosis, and clinical management of the syndrome, along with evidence-based recommendations for optimal clinical practice. This article provides clinical practice guidance to the pulmonary and critical care community regarding the diagnosis, management, and prevention of acute CO poisoning. The article represents the consensus opinion of four recognized content experts in the field. Supporting data were drawn from the published, peer-reviewed literature on CO poisoning, placing emphasis on selecting studies that most closely mirror clinical practice.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                19 July 2016
                2016
                : 6
                : 29656
                Affiliations
                [1 ]Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital , Taoyuan, Taiwan
                [2 ]Department of Nephrology and Division of Clinical Toxicology , Chang Gung Memorial Hospital and College of Medicine, Chang Gung University , Linkou, Taiwan
                [3 ]Kidney Research Center, Chang Gung Memorial Hospital , Linkou, Taiwan
                [4 ]Department of Dentistry and Craniofacial Orthodontics, Chang Gung Memorial Hospital , Linkou, Taiwan
                [5 ]Department of Medical Research, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University , Linkou, Taiwan
                [6 ]Department of Gastroenterology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University , Linkou, Taiwan
                [7 ]Department of Nephrology, China Medical University Hospital and College of Medicine, China Medical University , Taichung, Taiwan
                [8 ]Center for Tissue Engineering, Chang Gung Memorial Hospital , Linkou, Taiwan
                Author notes
                Article
                srep29656
                10.1038/srep29656
                4949594
                27430168
                e6f49d35-d453-4ec2-9a64-b194246d37b9
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 09 March 2016
                : 21 June 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article