66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a) study of the compatibility of conventional instrumentation with microfluidic structures, and (b) integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: not found
          • Article: not found

          Bulk heterojunction solar cells with internal quantum efficiency approaching 100%

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Localized surface plasmon resonance sensors.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.

              This critical review summarizes developments in microfluidic platforms that enable the miniaturization, integration, automation and parallelization of (bio-)chemical assays (see S. Haeberle and R. Zengerle, Lab Chip, 2007, 7, 1094-1110, for an earlier review). In contrast to isolated application-specific solutions, a microfluidic platform provides a set of fluidic unit operations, which are designed for easy combination within a well-defined fabrication technology. This allows the easy, fast, and cost-efficient implementation of different application-specific (bio-)chemical processes. In our review we focus on recent developments from the last decade (2000s). We start with a brief introduction into technical advances, major market segments and promising applications. We continue with a detailed characterization of different microfluidic platforms, comprising a short definition, the functional principle, microfluidic unit operations, application examples as well as strengths and limitations of every platform. The microfluidic platforms in focus are lateral flow tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale integration, segmented flow microfluidics, centrifugal microfluidics, electrokinetics, electrowetting, surface acoustic waves, and dedicated systems for massively parallel analysis. This review concludes with the attempt to provide a selection scheme for microfluidic platforms which is based on their characteristics according to key requirements of different applications and market segments. Applied selection criteria comprise portability, costs of instrument and disposability, sample throughput, number of parameters per sample, reagent consumption, precision, diversity of microfluidic unit operations and the flexibility in programming different liquid handling protocols (295 references).
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                August 2014
                21 August 2014
                : 14
                : 8
                : 15458-15479
                Affiliations
                IMST-Department of Micro- and Nanosystems Technology, Faculty of Technology and Maritime Sciences, Buskerud and Vestfold University College, Postboks 235, 3603 Kongsberg, Norway
                Author notes
                [* ] Author to whom correspondence should be addressed; E-Mail: tao.dong@ 123456hbv.no ; Tel.: +47-3303-7731; Fax: +47-3303-1103.
                Article
                sensors-14-15458
                10.3390/s140815458
                4178989
                25196161
                e6fda47c-9189-4267-a83b-8c0449da9d6d
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 15 July 2014
                : 14 August 2014
                : 15 August 2014
                Categories
                Review

                Biomedical engineering
                microfluidics,optical detection,electrochemistry,sensor integration,fluorescence,chemiluminescence,analyte detection,point of care

                Comments

                Comment on this article