Blog
About

6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Undervalued ubiquitous proteins

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of ubiquitous proteins (UPs) and their corresponding enzymes have been underestimated in carcinogenesis as the focus of much research revolved around measuring mutations and/or other genetic epiphenomena as surrogate markers of cancer and cancer progression. Over the past three decades, the scientific community has come to realize that the concentration on microdissection of cancer cells without accounting for the neighborhood in which these cells reside, i.e., the stroma, fails to reflect the true nature of cancer biology. UPs are fundamental for cellular homeostasis and phylogenetic development as well as for the integrity of the cytoskeleton and for the stability of cells and tissues in regards to intercellular signaling, cell shape and mobility, apoptosis, wound healing, and cell polarity. Corresponding enzymes are used by microorganisms to gain entry into the host by degradation of UPs and play a role to cleave peptide bonds for killing disease-causing life forms along for the creation of the precancerous niche (PCN) during carcinogenesis, cancer invasion, and in metastasis. The language used by such proteins as well as their complementary enzymes with its influence on multiple pathways and the cross-linked extracellular matrix is incompletely understood. The role of UPs in the disruption of signaling homeostasis and resulting interference with crosstalk in carcinogenesis appears sufficiently delineated to warrant a much more refined examination of their qualitative and quantitative contribution to the development of cancer and cancer therapy.

          Related collections

          Most cited references 156

          • Record: found
          • Abstract: found
          • Article: not found

          Tensional homeostasis and the malignant phenotype.

          Tumors are stiffer than normal tissue, and tumors have altered integrins. Because integrins are mechanotransducers that regulate cell fate, we asked whether tissue stiffness could promote malignant behavior by modulating integrins. We found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation. Matrix stiffness perturbs epithelial morphogenesis by clustering integrins to enhance ERK activation and increase ROCK-generated contractility and focal adhesions. Contractile, EGF-transformed epithelia with elevated ERK and Rho activity could be phenotypically reverted to tissues lacking focal adhesions if Rho-generated contractility or ERK activity was decreased. Thus, ERK and Rho constitute part of an integrated mechanoregulatory circuit linking matrix stiffness to cytoskeletal tension through integrins to regulate tissue phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Negative regulation of transforming growth factor-beta by the proteoglycan decorin.

            Decorin is a small chondroitin-dermatan sulphate proteoglycan consisting of a core protein and a single glycosaminoglycan chain. Eighty per cent of the core protein consists of 10 repeats of a leucin-rich sequence of 24 amino acids. Similar repeats have been found in two other proteoglycans, biglycan and fibromodulin, and in several other proteins including Drosophila morphogenetic proteins. Expression of high levels of decorin in Chinese hamster ovary cells has a dramatic effect on their morphology and growth properties. We now report that this effect is due at least in part to the ability of decorin to bind transforming growth factor-beta, an autocrine factor that stimulates the growth of Chinese hamster ovary cells. As transforming growth factor-beta induces synthesis of decorin in many cell types, our results suggest that decorin may be a component of a feedback system regulating cell growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New consensus nomenclature for mammalian keratins

              Keratins are intermediate filament–forming proteins that provide mechanical support and fulfill a variety of additional functions in epithelial cells. In 1982, a nomenclature was devised to name the keratin proteins that were known at that point. The systematic sequencing of the human genome in recent years uncovered the existence of several novel keratin genes and their encoded proteins. Their naming could not be adequately handled in the context of the original system. We propose a new consensus nomenclature for keratin genes and proteins that relies upon and extends the 1982 system and adheres to the guidelines issued by the Human and Mouse Genome Nomenclature Committees. This revised nomenclature accommodates functional genes and pseudogenes, and although designed specifically for the full complement of human keratins, it offers the flexibility needed to incorporate additional keratins from other mammalian species.
                Bookmark

                Author and article information

                Journal
                fopen
                https://www.4open-sciences.org
                4open
                4open
                EDP Sciences
                2557-0250
                25 April 2019
                25 April 2019
                2019
                : 2
                : ( publisher-idID: fopen/2019/01 )
                Affiliations
                [1 ] Theodor-Billroth-Akademie®, , Germany, USA,
                [2 ] INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, , Germany, USA,
                [3 ] Department of Surgery, Carl-Thiem-Klinikum, , Cottbus, Brandenburg, Germany,
                [4 ] Risk-Based Decisions Inc., Sacramento, , CA, USA,
                Author notes
                [* ]Corresponding author: b-bruecher@ 123456gmx.de
                Article
                fopen180006
                10.1051/fopen/2019002
                © B.L.D.M. Brücher and I.S. Jamall, Published by EDP Sciences 2019

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 176, Pages: 13
                Product
                Self URI (journal page): https://www.4open-sciences.org/
                Categories
                Life Sciences - Medicine
                Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
                Review Article
                Custom metadata
                4open 2019, 2, 7
                2019
                2019
                2019

                Comments

                Comment on this article