31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      WDR1 Promotes Cell Growth and Migration and Contributes to Malignant Phenotypes of Non-small Cell Lung Cancer through ADF/cofilin-mediated Actin Dynamics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The characteristic of carcinoma is cell migration and invasion, which involve in strong actin dynamics. Regulations of actin dynamics have been implicated in cancer cell migration and tumor progression. WDR1 (WD-repeat domain 1) is a major cofactor of the actin depolymerizing factor (ADF)/cofilin, strongly accelerating ADF/cofilin-mediated actin disassembly. The role of WDR1 in non-small cell lung cancer (NSCLC) progression has been unknown. Here, we show that the expression levels of WDR1 are increased in human NSCLC tissues compared with adjacent non-tumor tissues, and high WDR1 level correlates with poor prognosis in NSCLC patients. Knockdown of WDR1 in NSCLC cells significantly inhibits cell migration, invasion, EMT process and tumor cell growth in vitro and in vivo. Otherwise, overexpression of WDR1 promotes NSCLC cell proliferation and migration. Mechanically, our data suggested WDR1 regulated tumor cells proliferation and migration might through actin cytoskeleton-mediated regulation of YAP, and we demonstrated that WDR1 contributes to NSCLC progression through ADF/cofilin-mediated actin disassembly. Our findings implicate that the ADF/cofilin-WDR1-actin axis as an activator of malignant phenotype that will be a promising therapeutic target in lung cancer.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Actin, a central player in cell shape and movement.

          The protein actin forms filaments that provide cells with mechanical support and driving forces for movement. Actin contributes to biological processes such as sensing environmental forces, internalizing membrane vesicles, moving over surfaces, and dividing the cell in two. These cellular activities are complex; they depend on interactions of actin monomers and filaments with numerous other proteins. Here, we present a summary of the key questions in the field and suggest how those questions might be answered. Understanding actin-based biological phenomena will depend on identifying the participating molecules and defining their molecular mechanisms. Comparisons of quantitative measurements of reactions in live cells with computer simulations of mathematical models will also help generate meaningful insights.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Actin remodeling confers BRAF inhibitor resistance to melanoma cells through YAP/TAZ activation.

            The activation of transcriptional coactivators YAP and its paralog TAZ has been shown to promote resistance to anti-cancer therapies. YAP/TAZ activity is tightly coupled to actin cytoskeleton architecture. However, the influence of actin remodeling on cancer drug resistance remains largely unexplored. Here, we report a pivotal role of actin remodeling in YAP/TAZ-dependent BRAF inhibitor resistance in BRAF V600E mutant melanoma cells. Melanoma cells resistant to the BRAF inhibitor PLX4032 exhibit an increase in actin stress fiber formation, which appears to promote the nuclear accumulation of YAP/TAZ. Knockdown of YAP/TAZ reduces the viability of resistant melanoma cells, whereas overexpression of constitutively active YAP induces resistance. Moreover, inhibition of actin polymerization and actomyosin tension in melanoma cells suppresses both YAP/TAZ activation and PLX4032 resistance. Our siRNA library screening identifies actin dynamics regulator TESK1 as a novel vulnerable point of the YAP/TAZ-dependent resistance pathway. These results suggest that inhibition of actin remodeling is a potential strategy to suppress resistance in BRAF inhibitor therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nucleating actin for invasion.

              The invasion of cancer cells into the surrounding tissue is a prerequisite and initial step in metastasis, which is the leading cause of death from cancer. Invasive cell migration requires the formation of various structures, such as invadopodia and pseudopodia, which require actin assembly that is regulated by specialized actin nucleation factors. There is a large variety of different actin nucleators in human cells, such as formins, spire and Arp2/3-regulating proteins, and the list is likely to grow. Studies of the mechanisms of various actin nucleation factors that are involved in cancer cell function may ultimately provide new treatments for invasive and metastatic disease.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2018
                8 June 2018
                : 14
                : 9
                : 1067-1080
                Affiliations
                [1 ]Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China.
                [2 ]Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province 210029, P.R. China.
                Author notes
                ✉ Corresponding authors: Baiyin Yuan, Ph.D., Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan 430081, P.R. China; Tel: +86 27 68893368; Email: baiyinyuannj@ 123456126.com . Chenxi Zhang, Ph.D., Central Laboratory, Nanjing Chest Hospital, Medical School of Southeast University, 215 Guangzhou Road, Gulou, Nanjing 210029, P.R. China; Tel: +86 25 58619883; Email: chenxi4262@ 123456126.com . Tongcun Zhang, Ph.D., Biomedical Research Institute, College of Life Science and Health, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan 430081, P.R. China; Tel: +86 27 68893368; Email: zhangtongcun@ 123456wust.edu.cn .

                * These authors contributed equally to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv14p1067
                10.7150/ijbs.23845
                6036740
                29989053
                e70c7bad-2ba6-4f09-ae8c-cb6744770b90
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 14 November 2017
                : 5 May 2018
                Categories
                Research Paper

                Life sciences
                wdr1,cancer,non-small cell lung cancer,actin dynamics,adf/cofilin
                Life sciences
                wdr1, cancer, non-small cell lung cancer, actin dynamics, adf/cofilin

                Comments

                Comment on this article