7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perovskite solar cells (PSCs) have been intensively investigated over the last several years. Unprecedented progress has been made in improving their power conversion efficiency; however, the stability of perovskite materials and devices remains a major obstacle for the future commercialization of PSCs. In this review, recent progress in PSCs is summarized in terms of the hybridization of compositions and device architectures for PSCs, with special attention paid to device stability. A brief history of the development of PSCs is given, and their chemical structures, optoelectronic properties, and the different types of device architectures are discussed. Then, perovskite composition engineering is reviewed in detail, with particular emphasis on the cationic components and their impact on film morphology, the optoelectronic properties, device performance, and stability. In addition, the impact of two-dimensional and/or one-dimensional and nanostructured perovskites on structural and device stability is surveyed. Finally, a future outlook is proposed for potential resolutions to overcome the current issues.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers.

          The recent dramatic rise in power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) has triggered intense research worldwide. However, high PCE values have often been reached with poor stability at an illuminated area of typically less than 0.1 square centimeter. We used heavily doped inorganic charge extraction layers in planar PSCs to achieve very rapid carrier extraction, even with 10- to 20-nanometer-thick layers, avoiding pinholes and eliminating local structural defects over large areas. The robust inorganic nature of the layers allowed for the fabrication of PSCs with an aperture area >1 square centimeter that have a PCE >15%, as certified by an accredited photovoltaic calibration laboratory. Hysteresis in the current-voltage characteristics was eliminated; the PSCs were stable, with >90% of the initial PCE remaining after 1000 hours of light soaking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            One-Year stable perovskite solar cells by 2D/3D interface engineering

            Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells

                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                23 May 2018
                June 2018
                : 8
                : 6
                : 356
                Affiliations
                [1 ]Department of Physics, Chongqing University, No. 55, University City South Rd., Chongqing 401331, China; yinghui@ 123456cqu.edu.cn (Y.W.); wezer@ 123456cqu.edu.cn (G.C.); lyliu@ 123456cqu.edu.cn (L.L.)
                [2 ]Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, No. 1088, Xueyuan Rd., Shenzhen 518055, China; chenw7@ 123456mail.sustc.edu.cn (W.C.); hezb@ 123456sustc.edu.cn (Z.H.)
                Author notes
                [* ]Correspondence: phyliurc@ 123456cqu.edu.cn ; Tel.: +136-3837-0036
                Article
                nanomaterials-08-00356
                10.3390/nano8060356
                6027407
                29882844
                e715f6fd-f4b3-4480-88e9-20d7f5598954
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 April 2018
                : 18 May 2018
                Categories
                Review

                cs-based perovskite,2 dimensional,polymer,layered structure,bulk heterojunctions,composite-structured,perovskite solar cells

                Comments

                Comment on this article