18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of guinea pig T cell responses elicited after EP-assisted delivery of DNA vaccines to the skin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The skin is an ideal target tissue for vaccine delivery for a number of reasons. It is highly accessible, and most importantly, enriched in professional antigen presenting cells. Possessing strong similarities to human skin physiology and displaying a defined epidermis, the guinea pig is an appropriate model to study epidermal delivery of vaccine. However, whilst we have characterized the humoral responses in the guinea pig associated with skin vaccine protocols we have yet to investigate the T cell responses. In response to this inadequacy, we developed an IFN-γ ELISpot assay to characterize the cellular immune response in the peripheral blood of guinea pigs. Using a nucleoprotein (NP) influenza pDNA vaccination regimen, we characterized host T cell responses. After delivery of the DNA vaccine to the guinea pig epidermis we detected robust and rapid T cell responses. The levels of IFN-γ spot-forming units averaged approximately 5000 per million cells after two immunizations. These responses were broad in that multiple regions across the NP antigen elicited a T cell response. Interestingly, we identified a number of NP immunodominant T cell epitopes to be conserved across an outbred guinea pig population, a phenomenon which was also observed after immunization with a RSV DNA vaccine. We believe this data enhances our understanding of the cellular immune response elicited to a vaccine in guinea pigs, and globally, will advance the use of this model for vaccine development, especially those targeting skin as a delivery site.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Microneedles for transdermal drug delivery.

          The success of transdermal drug delivery has been severely limited by the inability of most drugs to enter the skin at therapeutically useful rates. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery, especially for macromolecules. Using the tools of the microelectronics industry, microneedles have been fabricated with a range of sizes, shapes and materials. Most drug delivery studies have emphasized solid microneedles, which have been shown to increase skin permeability to a broad range of molecules and nanoparticles in vitro. In vivo studies have demonstrated delivery of oligonucleotides, reduction of blood glucose level by insulin, and induction of immune responses from protein and DNA vaccines. For these studies, needle arrays have been used to pierce holes into skin to increase transport by diffusion or iontophoresis or as drug carriers that release drug into the skin from a microneedle surface coating. Hollow microneedles have also been developed and shown to microinject insulin to diabetic rats. To address practical applications of microneedles, the ratio of microneedle fracture force to skin insertion force (i.e. margin of safety) was found to be optimal for needles with small tip radius and large wall thickness. Microneedles inserted into the skin of human subjects were reported as painless. Together, these results suggest that microneedles represent a promising technology to deliver therapeutic compounds into the skin for a range of possible applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Broadly targeted CD8⁺ T cell responses restricted by major histocompatibility complex E.

            Major histocompatibility complex E (MHC-E) is a highly conserved, ubiquitously expressed, nonclassical MHC class Ib molecule with limited polymorphism that is primarily involved in the regulation of natural killer (NK) cells. We found that vaccinating rhesus macaques with rhesus cytomegalovirus vectors in which genes Rh157.5 and Rh157.4 are deleted results in MHC-E-restricted presentation of highly varied peptide epitopes to CD8αβ(+) T cells, at ~4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side-chain interactions within a stable, open binding groove. Because MHC-E is up-regulated to evade NK cell activity in cells infected with HIV, simian immunodeficiency virus, and other persistent viruses, MHC-E-restricted CD8(+) T cell responses have the potential to exploit pathogen immune-evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Electroporation delivery of DNA vaccines: prospects for success.

              A number of noteworthy technology advances in DNA vaccines research and development over the past few years have led to the resurgence of this field as a viable vaccine modality. Notably, these include--optimization of DNA constructs; development of new DNA manufacturing processes and formulations; augmentation of immune responses with novel encoded molecular adjuvants; and the improvement in new in vivo delivery strategies including electroporation (EP). Of these, EP mediated delivery has generated considerable enthusiasm and appears to have had a great impact in vaccine immunogenicity and efficacy by increasing antigen delivery upto a 1000 fold over naked DNA delivery alone. This increased delivery has resulted in an improved in vivo immune response magnitude as well as response rates relative to DNA delivery by direct injection alone. Indeed the immune responses and protection from pathogen challenge observed following DNA administration via EP in many cases are comparable or superior to other well studied vaccine platforms including viral vectors and live/attenuated/inactivated virus vaccines. Significantly, the early promise of EP delivery shown in numerous pre-clinical animal models of many different infectious diseases and cancer are now translating into equally enhanced immune responses in human clinical trials making the prospects for this vaccine approach to impact diverse disease targets tangible. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                8406899
                7945
                Vaccine
                Vaccine
                Vaccine
                0264-410X
                1873-2518
                24 December 2016
                25 November 2016
                03 January 2017
                09 January 2017
                : 35
                : 1
                : 61-70
                Affiliations
                [a ]Inovio Pharmaceuticals, Inc., 660W. Germantown Pike, Suite 110, Plymouth Meeting, PA 19462, USA
                [b ]Intracelluar Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
                [c ]Vaccine Center, The Wistar Institute of Anatomy & Biology, 3601 Spruce St., Philadelphia, PA 19104, USA
                Article
                NIHMS838001
                10.1016/j.vaccine.2016.11.052
                5221502
                27894716
                e728c3cf-74f0-4273-a615-99bac0761e63

                This is an open access article under the CC BY-NC-ND license

                History
                Categories
                Article

                Infectious disease & Microbiology
                guinea pig,t cells,elispot,dna vaccine,electroporation,skin
                Infectious disease & Microbiology
                guinea pig, t cells, elispot, dna vaccine, electroporation, skin

                Comments

                Comment on this article