14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Possible role for glomerular-derived angiotensinogen in nephrotic syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and objective:

          Renin–angiotensin system (RAS) inhibitors reduce glomerular injury and proteinuria, indicating that angiotensin II (Ang II) is involved in glomerular diseases. Although the local RAS is reported to play an essential role in maintaining local tissue functions, the role of the local RAS in regulating glomerular function is not well evaluated. In this study, we analyzed the glomerular expression of RAS components in nephrotic models and the effect of Ang II receptor blockers (ARB) on the expression of angiotensinogen (AGT).

          Methods:

          The levels of glomerular expression of RAS components were analyzed in two nephrotic models: anti-nephrin antibody-induced nephropathy and PAN nephropathy, a mimic of human minimal change nephrotic syndrome. The effect of the ARB irbesartan on the expression of AGT in the nephrotic model was analyzed.

          Results:

          Glomerular expression of AGT and the receptors for Ang II was clearly increased in the nephrotic models, while the expression levels of renin, ACE and ACE2 were decreased. ARB treatment suppressed the increase of glomerular expression of AGT in the nephrotic model.

          Conclusion:

          It is conceivable that the promoted local RAS action participated in the glomerular dysfunction, and that ARB treatment ameliorated slit diaphragm injury by inhibiting the positive feedback loop of the activated local Ang II action.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines.

          Mature podocytes are among the most complex differentiated cells and possess a highly branched array of foot processes that are essential to glomerular filtration in the kidney. Such differentiated podocytes are unable to replicate and culturing of primary podocytes results in rapid growth arrest. Therefore, conditionally immortalized mouse podocyte clones (MPC) were established, which are highly proliferative when cultured under permissive conditions. Nonpermissive conditions render the majority of MPC cells growth arrested within 6 days and induce many characteristics of differentiated podocytes. Both proliferating and differentiating MPC cells express the WT-1 protein and an ordered array of actin fibers and microtubules extends into the forming cellular processes during differentiation, reminiscent of podocyte processes in vivo. These cytoskeletal rearrangements and process formation are accompanied by the onset of synaptopodin synthesis, an actin-associated protein marking specifically differentiated podocytes. In addition, focal contacts are rearranged into an ordered pattern in differentiating MPC cells. Most importantly, electrophysiological studies demonstrate that differentiated MPC cells respond to the vasoactive peptide bradykinin by changes in intracellular calcium concentration. These results suggest a regulatory role of podocytes in glomerular filtration. Taken together, these studies establish that conditionally immortalized MPC cells retain a differentiation potential similar to podocytes in vivo. Therefore, the determinative steps of podocyte differentiation and process formation are studied for the first time using an inducible in vitro model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis.

            A consensus has emerged that angiotensin-converting-enzyme (ACE) inhibitors and angiotensin-II receptor blockers (ARBs) have specific renoprotective effects. Guidelines specify that these are the drugs of choice for the treatment of hypertension in patients with renal disease. We sought to determine to what extent this consensus is supported by the available evidence. Electronic databases were searched up to January, 2005, for randomised trials assessing antihypertensive drugs and progression of renal disease. Effects on primary discrete endpoints (doubling of creatinine and end-stage renal disease) and secondary continuous markers of renal outcomes (creatinine, albuminuria, and glomerular filtration rate) were calculated with random-effect models. The effects of ACE inhibitors or ARBs in placebo-controlled trials were compared with the effects seen in trials that used an active comparator drug. Comparisons of ACE inhibitors or ARBs with other antihypertensive drugs yielded a relative risk of 0.71 (95% CI 0.49-1.04) for doubling of creatinine and a small benefit on end-stage renal disease (relative risk 0.87, 0.75-0.99). Analyses of the results by study size showed a smaller benefit in large studies. In patients with diabetic nephropathy, no benefit was seen in comparative trials of ACE inhibitors or ARBs on the doubling of creatinine (1.09, 0.55-2.15), end-stage renal disease (0.89, 0.74-1.07), glomerular filtration rate, or creatinine amounts. Placebo-controlled trials of ACE inhibitors or ARBs showed greater benefits than comparative trials on all renal outcomes, but were accompanied by substantial reductions in blood pressure in favour of ACE inhibitors or ARBs. The benefits of ACE inhibitors or ARBs on renal outcomes in placebo-controlled trials probably result from a blood-pressure-lowering effect. In patients with diabetes, additional renoprotective actions of these substances beyond lowering blood pressure remain unproven, and there is uncertainty about the greater renoprotection seen in non-diabetic renal disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis.

              Inhibitors of the renin-angiotensin-aldosterone system attenuate glomerulosclerosis and interstitial fibrosis. Although the mechanisms underlying their antifibrotic effects are complex, angiotensin II (Ang II) emerges as a major profibrogenic cytokine. Ang II modulates renal cell growth, extracellular matrix synthesis, and degradation by multiple fibrotic pathways. One of the main targets of Ang II in renal fibrosis is TGFβ. Many, but not all, of the stimulatory effects of Ang II on fibrogenesis depend on the induction of TGFβ and its downstream mediators of matrix accumulation, inflammation, and apoptosis. However because of the difficulty in targeting TGFβ, connective tissue growth factor β (CTGF), a downstream mediator of TGFβ, has become a more promising antifibrotic target. Ang II can directly induce expression of renal CTGF and mediate epithelial-mesenchymal transition. Other profibrotic factors stimulated by Ang II include endothelin-1, plasminogen activator inhibitor-1, matrix metalloproteinase (MMP)-2, and a tissue inhibitor of metalloproteinase-2. Finally, connections among Ang II, hypoxia, and the induction of hypoxia-inducible factor-1α contribute to fibrogenesis. A better understanding of the multiple morphogenic effects of Ang II may be necessary to develop better strategies to halt the progression of renal disease. Copyright © 2011 by the American Society of Nephrology
                Bookmark

                Author and article information

                Journal
                J Renin Angiotensin Aldosterone Syst
                J Renin Angiotensin Aldosterone Syst
                JRA
                spjra
                Journal of the Renin-Angiotensin-Aldosterone System: JRAAS
                SAGE Publications (Sage UK: London, England )
                1470-3203
                1752-8976
                08 December 2016
                Oct-Dec 2016
                : 17
                : 4
                : 1470320316681223
                Affiliations
                [1 ]Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan
                [2 ]Department of Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Japan
                Author notes
                [*]Hiroshi Kawachi, Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata, 951-8510, Japan. Email: kawachi@ 123456med.niigata-u.ac.jp
                Article
                10.1177_1470320316681223
                10.1177/1470320316681223
                5843942
                27932705
                e72aab54-97d4-4bfb-8294-62dd0c622367
                © The Author(s) 2016

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License ( http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 25 July 2016
                : 28 October 2016
                Categories
                Original Article
                Custom metadata
                October-December 2016

                angiotensinogen,podocyte,slit diaphragm,nephrin
                angiotensinogen, podocyte, slit diaphragm, nephrin

                Comments

                Comment on this article