12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recombinant Human Erythropoietin Protects Myocardial Cells from Apoptosis via the Janus-Activated Kinase 2/Signal Transducer and Activator of Transcription 5 Pathway in Rats with Epilepsy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To investigate the potential mechanisms underlying the protective effects of recombinant human erythropoietin (rhEPO) and carbamylated EPO (CEPO) against myocardial cell apoptosis in epilepsy.

          Methods

          Rats were given an intra-amygdala injection of kainic acid to induce epilepsy. Groups of rats were treated with rhEPO or CEPO before induction of epilepsy, whereas additional rats were given a caudal vein injection of AG490, a selective inhibitor of Janus kinase 2 (JAK2). At different time points after seizure onset, electroencephalogram changes were recorded, and myocardium samples were taken for the detection of myocardial cell apoptosis and expression of JAK2, signal transducer and activator of transcription 5 (STAT5), caspase-3, and bcl-xl mRNAs and proteins.

          Results

          Induction of epilepsy significantly enhanced myocardial cell apoptosis and upregulated the expression of caspase-3 and bcl-xl proteins and JAK2 and STAT5a at both the mRNA and protein levels. Pretreatment with either rhEPO or CEPO reduced the number of apoptotic cells, upregulated bcl-xl expression, and downregulated caspase-3 expression in the myocardium of epileptic rats. Both myocardial JAK2 and STAT5a mRNAs, as well as phosphorylated species of JAK2 and STAT5a, were upregulated in epileptic rats in response to rhEPO—but not to CEPO—pretreatment. AG490 treatment increased apoptosis, upregulated caspase-3 protein expression, and downregulated bcl-xl protein expression in the myocardium of epileptic rats.

          Conclusions

          These results indicate that myocardial cell apoptosis may contribute to myocardial injury in epilepsy. EPO protects myocardial cells from apoptosis via the JAK2/STAT5 pathway in rats with experimental epilepsy, whereas CEPO exerts antiapoptotic activity perhaps via a pathway independent of JAK2/STAT5 signaling.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Derivatives of erythropoietin that are tissue protective but not erythropoietic.

          Erythropoietin (EPO) is both hematopoietic and tissue protective, putatively through interaction with different receptors. We generated receptor subtype-selective ligands allowing the separation of EPO's bioactivities at the cellular level and in animals. Carbamylated EPO (CEPO) or certain EPO mutants did not bind to the classical EPO receptor (EPOR) and did not show any hematopoietic activity in human cell signaling assays or upon chronic dosing in different animal species. Nevertheless, CEPO and various nonhematopoietic mutants were cytoprotective in vitro and conferred neuroprotection against stroke, spinal cord compression, diabetic neuropathy, and experimental autoimmune encephalomyelitis at a potency and efficacy comparable to EPO.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intractable epilepsy: management and therapeutic alternatives.

            More than half of patients with newly diagnosed epilepsy achieve complete seizure control without major side-effects. Patients who continue to have seizures after initial medical therapy should have an early and detailed assessment to confirm the diagnosis, to determine the underlying cause and epilepsy syndrome, and to choose an adequate treatment strategy. The risks and potential benefits of surgical procedures or experimental therapy have to be weighed against the chance of improvement and the potential side-effects of additional medical therapy. Surgery for temporal lobe epilepsy, the most common cause of focal epilepsy, can control seizures and improve quality of life in appropriately selected patients. However, around 20-30% of patients do not respond to medical or surgical treatment. The management of chronic intractable epilepsy requires comprehensive care to address the adverse events of medical treatment, quality of life issues, and comorbid disorders. Much research focuses on the experimental treatment options that offer hope of seizure reduction or cure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling.

              Erythropoietin (EPO), originally identified for its critical hormonal role in promoting erythrocyte survival and differentiation, is a member of the large and diverse cytokine superfamily. Recent studies have identified multiple paracrineautocrine functions of EPO that coordinate local responses to injury by maintaining vascular autoregulation and attenuating both primary (apoptotic) and secondary (inflammatory) causes of cell death. Experimental evidence also supports a role for EPO in repair and regeneration after brain and spinal cord injury, including the recruitment of stem cells into the region of damage. Tissue expression of the EPO receptor is widespread, especially during development, and includes the heart. However, it is currently unknown as to whether EPO plays a physiological function in adult myocardial tissue. We have assessed the potential protective role of EPO in vitro with adult rat cardiomyocytes, and in vivo in a rat model of myocardial infarction with reperfusion. The results show that EPO markedly prevents the apoptosis of cultured adult rat myocardiocytes subjected to 28 h of hypoxia (approximately 3% normal oxygen). Additional studies employing a rat model of coronary ischemia-reperfusion showed that the administration of recombinant human EPO (5,000 units/kg of body weight; i.p. daily for 7 days) reduces cardiomyocyte loss by approximately 50%, an extent sufficient to normalize hemodynamic function within 1 week after reperfusion. These observations not only suggest a potential therapeutic role for recombinant human EPO in the treatment of myocardial ischemia and infarction by preventing apoptosis and attenuating postinfarct deterioration in hemodynamic function, but also predict that EPO is likely a tissue-protective cytokine in other organs as well.
                Bookmark

                Author and article information

                Contributors
                Journal
                Curr Ther Res Clin Exp
                Curr Ther Res Clin Exp
                Current Therapeutic Research, Clinical and Experimental
                Elsevier
                0011-393X
                1879-0313
                04 August 2015
                December 2015
                04 August 2015
                : 77
                : 90-98
                Affiliations
                [1 ]Department of Cardiology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
                [2 ]Department of Geriatrics, First Hospital of Jilin University, Changchun, China
                Author notes
                [* ]Address correspondence to: Sui-Sheng Wu, MD, Department of Geriatrics, First Hospital of Jilin University, Changchun 130021, China. suishengwu@ 123456gmail.com
                [?>†?>]

                These authors contributed equally to this work.

                Article
                S0011-393X(15)00009-0
                10.1016/j.curtheres.2015.07.001
                4644243
                e7308c0a-fe19-405f-a3ca-a2bf42097657
                © 2015 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 July 2015
                Categories
                Original Research

                apoptosis,epilepsy,erythropoietin,jak2,stat5
                apoptosis, epilepsy, erythropoietin, jak2, stat5

                Comments

                Comment on this article