8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Iron uptake by plants from microbial siderophores : a study with 7-nitrobenz-2 oxa-1,3-diazole-desferrioxamine as fluorescent ferrioxamine B analog.

      Plant physiology
      American Society of Plant Biologists (ASPB)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The synthetically produced fluorescent siderophore NBD-desferrioxamine B (NBD-DFO), an analog of the natural siderophore ferrioxamine B, was used to study iron uptake by plants. Short-term (10-hour) (55)Fe uptake rates by cotton (Gossypium spp.) and maize (Zea mays L.) plants from the modified siderophore were similar to those of the natural one. In longer-term uptake experiments (3 weeks), both siderophore treatments resulted in similar leaf chlorophyll concentration and dry matter yield. These results suggest that the synthetic derivative acts similarly to the natural siderophore. The NBD-DFO is fluorescent only when unferrated and can thus be used as a probe to follow iron removal from the siderophore. Monitoring of the fluorescence increase in a nutrient solution containing Fe(3+)-NBD-DFO showed that iron uptake by plants occurs at the cell membrane. The rate of iron uptake was significantly lower in both plant species in the presence of antibiotic agent, thus providing evidence for iron uptake by rhizosphere microbes that otherwise could have been attributed to plant uptake. Confocal fluorescence microscopy revealed that iron was taken up from the complex by cotton plants, and to a much lesser extent by maize plants. The active cotton root sites were located at the main and lateral root tips. Significant variations in the location and the intensity of the uptake were noticed under nonaxenic conditions, which suggested that rhizosphere microorganisms play an important role in NBD-DFO-mediated iron uptake.

          Related collections

          Author and article information

          Journal
          16669040
          1080628
          10.1104/pp.99.4.1329

          Comments

          Comment on this article

          scite_