11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ensete ventricosum: A Multipurpose Crop against Hunger in Ethiopia

      review-article
      The Scientific World Journal
      Hindawi

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ensete ventricosum is a traditional multipurpose crop mainly used as a staple/co-staple food for over 20 million people in Ethiopia. Despite this, scientific information about the crop is scarce. Three types of food, viz., Kocho (fermented product from scraped pseudostem and grated corm), Bulla (dehydrated juice), and Amicho (boiled corm) can be prepared from enset. These products are particularly rich in carbohydrates, minerals, fibres, and phenolics, but poor in proteins. Such meals are usually served with meat and cheese to supplement proteins. As a food crop, it has useful attributes such as foods can be stored for long time, grows in wide range of environments, produces high yield per unit area, and tolerates drought. It has an irreplaceable role as a feed for animals. Enset starch is found to have higher or comparable quality to potato and maize starch and widely used as a tablet binder and disintegrant and also in pharmaceutical gelling, drug loading, and release processes. Moreover, enset shows high genetic diversity within a population which in turn renders resilience and food security against the ever-changing environmental factors and land use dynamics. Therefore, more research attention and funding should be given to magnify and make wider use of the crop.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          The evolutionary ecology of clonally propagated domesticated plants.

          While seed-propagated crops have contributed many evolutionary insights, evolutionary biologists have often neglected clonally propagated crops. We argue that widespread notions about their evolution under domestication are oversimplified, and that they offer rich material for evolutionary studies. The diversity of their wild ancestors, the diverse ecologies of the crop populations themselves, and the intricate mix of selection pressures, acting not only on the parts harvested but also on the parts used by humans to make clonal propagules, result in complex and diverse evolutionary trajectories under domestication. We examine why farmers propagate some plants clonally, and discuss the evolutionary dynamics of sexual reproduction in clonal crops. We explore how their mixed clonal/sexual reproductive systems function, based on the sole example studied in detail, cassava (Manihot esculenta). Biotechnology is now expanding the number of clonal crops, continuing the 10 000-yr-old trend to increase crop yields by propagating elite genotypes. In an era of rapid global change, it is more important than ever to understand how the adaptive potential of clonal crops can be maintained. A key component of strategies for preserving this adaptive potential is the maintenance of mixed clonal/sexual systems, which can be achieved by encouraging and valuing farmer knowledge about the sexual reproductive biology of their clonal crops.
            • Record: found
            • Abstract: found
            • Article: not found

            The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer.

            Dietary fiber (DF) is deemed to be a key component in healthy eating. DF is not a static collection of undigestible plant materials that pass untouched or unencumbered through the gastrointestinal (GI) tract; instead, DFs are a vast array of complex saccharide-based molecules that can bind potential nutrients and nutrient precursors to prevent their absorption. Some DFs are fermentable, and the GI tract catabolism leads to the generation of various bioactive materials, such as short-chain fatty acids (SCFAs), that can markedly augment the GI tract biomass and change the composition of the GI tract flora. The health benefits of DFs include the prevention and mitigation of type 2 diabetes mellitus, cardiovascular disease and colon cancer. By modulating food ingestion, digestion, absorption and metabolism, DFs reduce the risk of hyperlipidemia, hypercholesterolemia and hyperglycemia. Emerging research has begun to investigate the role of DFs in immunomodulation. If substantiated, DFs could facilitate many biologic processes, including infection prevention and the improvement of mood and memory. This review describes the accepted physiologic functions of DFs and explores their new potential immune-based actions. Copyright © 2012 Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention.

              Many epidemiological and experimental studies have suggested that dietary fiber plays an important role in colon cancer prevention. These findings may relate to the ability of fiber to reduce the contact time of carcinogens within the intestinal lumen and to promote healthy gut microbiota, which modifies the host's metabolism in various ways. Elucidation of the mechanisms by which dietary fiber-dependent changes in gut microbiota enhance bile acid deconjugation, produce short chain fatty acids, and modulate inflammatory bioactive substances can lead to a better understanding of the beneficial role of dietary fiber. This article reviews the current knowledge concerning the mechanisms via which dietary fiber protects against colon cancer.

                Author and article information

                Contributors
                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                Hindawi
                2356-6140
                1537-744X
                2020
                6 January 2020
                : 2020
                : 6431849
                Affiliations
                Bahir Dar University, College of Science, Department of Biology, Mail-79, Bahir Dar, Ethiopia
                Author notes

                Academic Editor: Tadashi Takamizo

                Author information
                https://orcid.org/0000-0001-5965-0014
                Article
                10.1155/2020/6431849
                7199586
                32395087
                e742a58e-9f93-4d4b-94b4-9db8916ff243
                Copyright © 2020 Getahun Yemata.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 October 2019
                : 20 December 2019
                Categories
                Review Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log