45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adult multipotent neural progenitor cells can differentiate into neurons, astrocytes, and oligodendrocytes in the mammalian central nervous system, but the molecular mechanisms that control their differentiation are not yet well understood. Insulin-like growth factor I (IGF-I) can promote the differentiation of cells already committed to an oligodendroglial lineage during development. However, it is unclear whether IGF-I affects multipotent neural progenitor cells. Here, we show that IGF-I stimulates the differentiation of multipotent adult rat hippocampus-derived neural progenitor cells into oligodendrocytes. Modeling analysis indicates that the actions of IGF-I are instructive. Oligodendrocyte differentiation by IGF-I appears to be mediated through an inhibition of bone morphogenetic protein signaling. Furthermore, overexpression of IGF-I in the hippocampus leads to an increase in oligodendrocyte markers. These data demonstrate the existence of a single molecule, IGF-I, that can influence the fate choice of multipotent adult neural progenitor cells to an oligodendroglial lineage.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.

          Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of insulin-like growth factors in embryonic and postnatal growth.

            A developmental analysis of growth kinetics in mouse embryos carrying null mutations of the genes encoding insulin-like growth factor I (IGF-I), IGF-II, and the type 1 IGF receptor (IGF1R), alone or in combination, defined the onset of mutational effects leading to growth deficiency and indicated that between embryonic days 11.0 and 12.5, IGF1R serves only the in vivo mitogenic signaling of IGF-II. From E13.5 onward, IGF1R interacts with both IGF-I and IGF-II, while IGF-II recognizes an additional unknown receptor (XR). In contrast with the embryo proper, placental growth is served exclusively by an IGF-II-XR interaction. Additional genetic data suggested that the type 2IGF/mannose 6-phosphate receptor is an unlikely candidate for XR. Postnatal growth curves indicated that surviving Igf-1(-/-) mutants, which are infertile and exhibit delayed bone development, continue to grow with a retarded rate after birth in comparison with wild-type littermates and become 30% of normal weight as adults.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The adult rat hippocampus contains primordial neural stem cells.

              Adult-derived hippocampal progenitors generate neurons, astrocytes, and oligodendrocytes in vitro and following grafting into the adult brain. Although these progenitors have a considerable capacity for in vitro self renewal, it is not known if each lineage is generated by separate committed precursors or by multipotent stem cells. By genetic marking, we have followed individual cells through the process of proliferative expansion, commitment, and differentiation. All three lineages are generated by single marked cells and the relative proportions of each lineage can be strongly influenced by environmental cues. Differentiation is accompanied by a characteristic progression of lineage-specific markers and can be potentiated by retinoic acid, elevated cyclic AMP, or neurotrophic factors. The ability to genetically mark and clone normal diploid hippocampal progenitors provides the first definitive evidence that multipotent neural stem cells exist outside of the adult striatal subventricular zone and supports the hypothesis that FGF-2-responsive neural stem cells may be broadly distributed in the adult brain.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                5 January 2004
                : 164
                : 1
                : 111-122
                Affiliations
                [1 ]Laboratory of Genetics, The Salk Institute, La Jolla, CA 92037
                [2 ]Department of Cell Fate Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
                Author notes

                Address correspondence to Fred H. Gage, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, CA 92037. Tel.: (858) 453-4100. Fax: (858) 597-0824. email: gage@ 123456salk.edu

                Article
                200308101
                10.1083/jcb.200308101
                2171962
                14709544
                e74a7c8e-78eb-4e89-a5eb-2b099c0df47a
                Copyright © 2004, The Rockefeller University Press
                History
                : 19 August 2003
                : 17 November 2003
                Categories
                Article

                Cell biology
                glia; neural stem cell; insulin; bmp; hippocampus
                Cell biology
                glia; neural stem cell; insulin; bmp; hippocampus

                Comments

                Comment on this article