33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nef Decreases HIV-1 Sensitivity to Neutralizing Antibodies that Target the Membrane-proximal External Region of TMgp41

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs) that target the membrane proximal external region (MPER) of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly discovered activity for Nef has important implications for anti-HIV-1 immunity and AIDS pathogenesis.

          Author Summary

          Nef is a pathogenic factor expressed by primate lentiviruses. HIV-1 virions produced by cells that express Nef acquire unknown modifications that allow them to infect new target cells with higher efficiency. We hypothesized that Nef might alter the structure or function of the HIV-1 Env glycoproteins. In this study we tested whether Nef alters the sensitivity of HIV-1 to several agents that inhibit HIV-1 by binding to different parts of Env. We found that Nef confers 10 to 50-fold resistance to neutralization by two antibodies (2F5 and 4E10) that belong to one of the most powerful classes of neutralizing agents, which are active against a wide range of HIV-1 isolates. We established that Nef decreases the recognition of the virus particles by these antibodies, which bind to a domain of the Env adjacent to the retroviral membrane (MPER). Env from diverse HIV-1 isolates are equally sensitive to this activity, and Nef proteins derived from both HIV-1 and SIV retain the activity. By protecting lentiviruses from one of the most broadly-acting classes of neutralizing antibodies, this new activity of Nef might make a significant contribution to AIDS pathogenesis.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1.

          We have isolated and characterized human monoclonal antibody 2G12 to the gp120 surface glycoprotein of human immunodeficiency virus type 1 (HIV-1). This antibody potently and broadly neutralizes primary and T-cell line-adapted clade B strains of HIV-1 in a peripheral blood mononuclear cell-based assay and inhibits syncytium formation in the AA-2 cell line. Furthermore, 2G12 possesses neutralizing activity against strains from clade A but not from clade E. Complement- and antibody-dependent cellular cytotoxicity-activating functions of 2G12 were also defined. The gp120 epitope recognized by 2G12 was found to be distinctive; binding of 2G12 to LAI recombinant gp120 was abolished by amino acid substitutions removing N-linked carbohydrates in the C2, C3, V4, and C4 regions of gp120. This gp120 mutant recognition pattern has not previously been observed, indicating that the 2G12 epitope is unusual. consistent with this, antibodies able to block 2G12 binding to recombinant gp120 were not detected in significant quantities in 16 HIV-positive human serum samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies.

            The design of a human immunodeficiency virus-1 (HIV-1) immunogen that can induce broadly reactive neutralizing antibodies is a major goal of HIV-1 vaccine development. Although rare human monoclonal antibodies (mAbs) exist that broadly neutralize HIV-1, HIV-1 envelope immunogens do not induce these antibody specificities. Here we demonstrate that the two most broadly reactive HIV-1 envelope gp41 human mAbs, 2F5 and 4E10, are polyspecific autoantibodies reactive with the phospholipid cardiolipin. Thus, current HIV-1 vaccines may not induce these types of antibodies because of autoantigen mimicry of the conserved membrane-proximal epitopes of the virus. These results may have important implications for generating effective neutralizing antibody responses by using HIV-1 vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Importance of the nef gene for maintenance of high virus loads and for development of AIDS.

              When rhesus monkeys were infected with a form of cloned SIVmac239 having a premature stop signal at the 93rd codon of nef, revertants with a coding codon at this position quickly and universally came to predominate in the infected animals. This suggests that there are strong selective forces for open functional forms of nef in vivo. Although deletion of nef sequences had no detectable effect on virus replication in cultured cells, deletion of nef sequences dramatically altered the properties of virus in infected rhesus monkeys. Our results indicate that nef is required for maintaining high virus loads during the course of persistent infection in vivo and for full pathologic potential. Thus, nef should become a target for antiviral drug development. Furthermore, the properties of virus with a deletion in nef suggest a means for making live-attenuated strains of virus for experimental vaccine testing.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2011
                December 2011
                15 December 2011
                : 7
                : 12
                : e1002442
                Affiliations
                [1 ]Section of Infectious Diseases, Imperial College London, London, United Kingdom
                [2 ]Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
                [3 ]Program in Gene Function and Expression, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
                [4 ]Department of Microbiology & Molecular Medicine, University of Geneva, Geneva, Switzerland
                Duke University Medical Center, United States of America
                Author notes

                ¤: Current address: Centre for Disease Control and Prevention of Guangdong Province, Guangzhou, China.

                Conceived and designed the experiments: RPJL MOM HG JL MP. Performed the experiments: RPJL JY MP. Analyzed the data: RPJL JL MP. Contributed reagents/materials/analysis tools: JH. Wrote the paper: RPJL MOM JL MP.

                Article
                PPATHOGENS-D-11-01351
                10.1371/journal.ppat.1002442
                3240605
                22194689
                e754335a-09c2-492e-af6d-955bc0071979
                Lai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 June 2011
                : 2 November 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Biology
                Microbiology
                Virology
                Immunodeficiency Viruses
                Virulence Factors and Mechanisms

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article