160
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Switchgrass ( Panicum virgatum L.) is a perennial grass that has been designated as an herbaceous model biofuel crop for the United States of America. To facilitate accelerated breeding programs of switchgrass, we developed both an association panel and linkage populations for genome-wide association study (GWAS) and genomic selection (GS). All of the 840 individuals were then genotyped using genotyping by sequencing (GBS), generating 350 GB of sequence in total. As a highly heterozygous polyploid (tetraploid and octoploid) species lacking a reference genome, switchgrass is highly intractable with earlier methodologies of single nucleotide polymorphism (SNP) discovery. To access the genetic diversity of species like switchgrass, we developed a SNP discovery pipeline based on a network approach called the Universal Network-Enabled Analysis Kit (UNEAK). Complexities that hinder single nucleotide polymorphism discovery, such as repeats, paralogs, and sequencing errors, are easily resolved with UNEAK. Here, 1.2 million putative SNPs were discovered in a diverse collection of primarily upland, northern-adapted switchgrass populations. Further analysis of this data set revealed the fundamentally diploid nature of tetraploid switchgrass. Taking advantage of the high conservation of genome structure between switchgrass and foxtail millet ( Setaria italica (L.) P. Beauv.), two parent-specific, synteny-based, ultra high-density linkage maps containing a total of 88,217 SNPs were constructed. Also, our results showed clear patterns of isolation-by-distance and isolation-by-ploidy in natural populations of switchgrass. Phylogenetic analysis supported a general south-to-north migration path of switchgrass. In addition, this analysis suggested that upland tetraploid arose from upland octoploid. All together, this study provides unparalleled insights into the diversity, genomic complexity, population structure, phylogeny, phylogeography, ploidy, and evolutionary dynamics of switchgrass.

          Author Summary

          Recent advances in sequencing technologies have enabled large-scale surveys of genetic diversity in model species with a wholly or partly sequenced reference genome. However, thousands of key species, which are essential for food, health, energy, and ecology, do not have reference genomes. To accelerate their breeding cycle via marker assisted selection, high-throughput genotyping is required for these valuable species, in spite of the absence of reference genomes. Based on genotyping by sequencing (GBS) technology, we developed a new single nucleotide polymorphism (SNP) discovery protocol, the Universal Network-Enabled Analysis Kit (UNEAK), which can be widely used in any species, regardless of genome complexity or the availability of a reference genome. Here we test this protocol on switchgrass, currently the prime energy crop species in the United States of America. In addition to the discovery of over a million SNPs and construction of high-density linkage maps, we provide novel insights into the genome complexity, ploidy, phylogeny, and evolution of switchgrass. This is only the beginning: we believe UNEAK offers the key to the exploration and exploitation of the genetic diversity of thousands of non-model species.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics.

          Integration of structural genomic data from a largely assembled rice genome sequence, with phylogenetic analysis of sequence samples for many other taxa, suggests that a polyploidization event occurred approximately 70 million years ago, before the divergence of the major cereals from one another but after the divergence of the Poales from the Liliales and Zingiberales. Ancient polyploidization and subsequent "diploidization" (loss) of many duplicated gene copies has thus shaped the genomes of all Poaceae cereal, forage, and biomass crops. The Poaceae appear to have evolved as separate lineages for approximately 50 million years, or two-thirds of the time since the duplication event. Chromosomes that are predicted to be homoeologs resulting from this ancient duplication event account for a disproportionate share of incongruent loci found by comparison of the rice sequence to a detailed sorghum sequence-tagged site-based genetic map. Differential gene loss during diploidization may have contributed many of these incongruities. Such predicted homoeologs also account for a disproportionate share of duplicated sorghum loci, further supporting the hypothesis that the polyploidization event was common to sorghum and rice. Comparative gene orders along paleo-homoeologous chromosomal segments provide a means to make phylogenetic inferences about chromosome structural rearrangements that differentiate among the grasses. Superimposition of the timing of major duplication events on taxonomic relationships leads to improved understanding of comparative gene orders, enhancing the value of data from botanical models for crop improvement and for further exploration of genomic biodiversity. Additional ancient duplication events probably remain to be discovered in other angiosperm lineages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

            Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina's Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers.

              We have used a "two-way pseudo-testcross" mapping strategy in combination with the random amplified polymorphic DNA (RAPD) assay to construct two moderate density genetic linkage maps for species of Eucalyptus. In the cross between two heterozygous individuals many single-dose RAPD markers will be heterozygous in one parent, null in the other and therefore segregate 1:1 in their F1 progeny following a testcross configuration. Meiosis and gametic segregation in each individual can be directly and efficiently analyzed using RAPD markers. We screened 305 primers of arbitrary sequence, and selected 151 to amplify a total of 558 markers. These markers were grouped at LOD 5.0, theta = 0.25, resulting in the maternal Eucalyptus grandis map having a total of 240 markers into 14 linkage groups (1552 cM) and the paternal Eucalyptus urophylla map with 251 markers in 11 linkage groups (1101 cM) (n = 11 in Eucalyptus). Framework maps ordered with a likelihood support > or = 1000:1 were assembled covering 95% of the estimated genome size in both individuals. Characterization of genome complexity of a sample of 48 mapped random amplified polymorphic DNA (RAPD) markers indicate that 53% amplify from low copy regions. These are the first reported high coverage linkage maps for any species of Eucalyptus and among the first for any hardwood tree species. We propose the combined use of RAPD markers and the pseudo-testcross configuration as a general strategy for the construction of single individual genetic linkage maps in outbred forest trees as well as in any highly heterozygous sexually reproducing living organisms. A survey of the occurrence of RAPD markers in different individuals suggests that the pseudo-testcross/RAPD mapping strategy should also be efficient at the intraspecific level and increasingly so with crosses of genetically divergent individuals. The ability to quickly construct single-tree genetic linkage maps in any forest species opens the way for a shift from the paradigm of a species index map to the heterodox proposal of constructing several maps for individual trees of a population, therefore mitigating the problem of linkage equilibrium between marker and trait loci for the application of marker assisted strategies in tree breeding.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                January 2013
                January 2013
                17 January 2013
                : 9
                : 1
                : e1003215
                Affiliations
                [1 ]Institute for Genomic Diversity, Cornell University, Ithaca, New York, United States of America
                [2 ]Agricultural Research Service, United States Department of Agriculture, Ithaca, New York, United States of America
                [3 ]Department of Crop and Soil Sciences, Cornell University, Ithaca, New York, United States of America
                [4 ]Agricultural Research Service, United States Department of Agriculture, Madison, Wisconsin, United States of America
                [5 ]Department of Agronomy, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
                The University of North Carolina at Chapel Hill, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FL ESB DEC JHC MDC. Performed the experiments: FL DEC JHC MDC. Analyzed the data: FL JG AEL. Contributed reagents/materials/analysis tools: FL DEC RE MDC JHC. Wrote the paper: FL DEC JG.

                [¤]

                Current address: International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico

                Article
                PGENETICS-D-12-01367
                10.1371/journal.pgen.1003215
                3547862
                23349638
                e757dd3e-14bd-4964-a607-c78f5ded47b9
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 4 June 2012
                : 19 November 2012
                Page count
                Pages: 14
                Funding
                This project was funded by the United States Department of Energy and United States Department of Agriculture Plant Feedstock Genomics for Bioenergy Program (Project no. DE-AI02-07ER64454), National Science Foundation awards 0820619 and 0965342, and the United States Department of Agriculture. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Biofuels
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Genetic Maps
                Linkage Maps
                Comparative Genomics
                Genome Complexity
                Genome Evolution
                Genome Sequencing
                Sequence Analysis
                Evolutionary Biology
                Genomic Evolution
                Genetics
                Plant Genetics
                Crop Genetics
                Population Genetics
                Ploidy
                Genomics
                Genome Analysis Tools
                Plant Science
                Plant Genomics
                Computer Science
                Algorithms

                Genetics
                Genetics

                Comments

                Comment on this article