1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study describes the development and characterization of self-microemulsifying drug delivery systems (SMEDDS) in liquid and pellet forms that result in improved solubility, dissolution, and in vivo oral absorption of the poorly water-soluble compound curcumin. Solubility of curcumin was determined in various vehicles, including oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were constructed to identify the most efficient self-emulsification region. The optimized SMEDDS used for curcumin formulations in liquid and pellet forms contained 70% mixtures of two surfactants: Cremophor EL and Labrasol (1:1), and 30% mixtures of oil: Labrafac PG and Capryol 90 (1:1). The curcumin-SMEDDS in liquid and pellet formulations rapidly formed fine oil-in-water microemulsions, with particle size ranges of 25.8-28.8 nm and 29.6-32.8 nm, respectively. The in vitro rate and extent of release of curcumin from liquid SMEDDS and SMEDDS pellets was about 16-fold higher than that of unformulated curcumin. Plasma concentration-time profiles from pharmacokinetic studies in rats dosed with liquid and pelleted SMEDDS showed 14- and 10-fold increased absorption of curcumin, respectively, compared to the aqueous suspensions of curcumin. Curcumin-SMEDDS liquid and curcumin-SMEDDS pellets were found to be stable up to 6 months under intermediate and accelerated conditions. These studies demonstrate that the new self-microemulsifying systems in liquid and pellet forms are promising strategies for the formulation of poorly soluble lipophilic compounds with low oral bioavailability.

          Related collections

          Author and article information

          Journal
          Eur J Pharm Biopharm
          European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
          Elsevier BV
          1873-3441
          0939-6411
          Nov 2010
          : 76
          : 3
          Affiliations
          [1 ] Department of Pharmaceutical Technology, Prince of Songkla University, Songkhla, Thailand.
          Article
          S0939-6411(10)00194-3
          10.1016/j.ejpb.2010.07.011
          20659556
          e75ab25d-e44a-45f8-be6e-1965c39c62ae
          History

          Comments

          Comment on this article