25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      pHTomato: A genetically-encoded indicator that enables multiplex interrogation of synaptic activity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The usefulness of genetically-encoded probes for optical monitoring of neuronal activity and brain circuits would be greatly advanced by the generation of multiple indicators with non-overlapping color spectra. Most existing indicators are derived from or spectrally convergent on GFP. We generated a bright, red, pH-sensitive fluorescent protein, pHTomato, that can be used in parallel with green probes to monitor neuronal activity. SypHTomato, made by fusing pHTomato to the vesicular membrane protein synaptophysin, reports activity-dependent exocytosis as efficiently as green reporters. When coexpressed with the GFP-based indicator GCaMP3 in the same neuron, SypHTomato enabled concomitant imaging of transmitter release and presynaptic Ca 2+ transients at single nerve terminals. Expressing SypHTomato and GCaMP3 in separate cells enabled the simultaneous determination of presynaptic vesicular turnover and postsynaptic sub- and supra-threshold responses from a connected pair of neurons. With these new tools, we observed a close size matching between pre- and postsynaptic compartments as well as interesting target-cell dependent regulation of presynaptic vesicle pools. Lastly, by coupling expression of pHTomato- and GFP-based probes with distinct variants of channelrhodopsin, we provided proof-of-principle for an all-optical approach to multiplex control and tracking of distinct circuit pathways.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin.

          Important Ca2+ signals in the cytosol and organelles are often extremely localized and hard to measure. To overcome this problem we have constructed new fluorescent indicators for Ca2+ that are genetically encoded without cofactors and are targetable to specific intracellular locations. We have dubbed these fluorescent indicators 'cameleons'. They consist of tandem fusions of a blue- or cyan-emitting mutant of the green fluorescent protein (GFP), calmodulin, the calmodulin-binding peptide M13, and an enhanced green- or yellow-emitting GFP. Binding of Ca2+ makes calmodulin wrap around the M13 domain, increasing the fluorescence resonance energy transfer (FRET) between the flanking GFPs. Calmodulin mutations can tune the Ca2+ affinities to measure free Ca2+ concentrations in the range 10(-8) to 10(-2) M. We have visualized free Ca2+ dynamics in the cytosol, nucleus and endoplasmic reticulum of single HeLa cells transfected with complementary DNAs encoding chimaeras bearing appropriate localization signals. Ca2+ concentration in the endoplasmic reticulum of individual cells ranged from 60 to 400 microM at rest, and 1 to 50 microM after Ca2+ mobilization. FRET is also an indicator of the reversible intermolecular association of cyan-GFP-labelled calmodulin with yellow-GFP-labelled M13. Thus FRET between GFP mutants can monitor localized Ca2+ signals and protein heterodimerization in individual live cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps

            The ability to silence the activity of genetically specified neurons in a temporally precise fashion would open up the ability to investigate the causal role of specific cell classes in neural computations, behaviors, and pathologies. Here we show that members of the class of light-driven outward proton pumps can mediate very powerful, safe, multiple-color silencing of neural activity. The gene archaerhodopsin-31 (Arch) from Halorubrum sodomense enables near-100% silencing of neurons in the awake brain when virally expressed in mouse cortex and illuminated with yellow light. Arch mediates currents of several hundred picoamps at low light powers, and supports neural silencing currents approaching 900 pA at light powers easily achievable in vivo. In addition, Arch spontaneously recovers from light-dependent inactivation, unlike light-driven chloride pumps that enter long-lasting inactive states in response to light. These properties of Arch are appropriate to mediate the optical silencing of significant brain volumes over behaviourally-relevant timescales. Arch function in neurons is well tolerated because pH excursions created by Arch illumination are minimized by self-limiting mechanisms to levels comparable to those mediated by channelrhodopsins2,3 or natural spike firing. To highlight how proton pump ecological and genomic diversity may support new innovation, we show that the blue-green light-drivable proton pump from the fungus Leptosphaeria maculans 4 (Mac) can, when expressed in neurons, enable neural silencing by blue light, thus enabling alongside other developed reagents the potential for independent silencing of two neural populations by blue vs. red light. Light-driven proton pumps thus represent a high-performance and extremely versatile class of “optogenetic” voltage and ion modulator, which will broadly empower new neuroscientific, biological, neurological, and psychiatric investigations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improving the photostability of bright monomeric orange and red fluorescent proteins.

              All organic fluorophores undergo irreversible photobleaching during prolonged illumination. Although fluorescent proteins typically bleach at a substantially slower rate than many small-molecule dyes, in many cases the lack of sufficient photostability remains an important limiting factor for experiments requiring large numbers of images of single cells. Screening methods focusing solely on brightness or wavelength are highly effective in optimizing both properties, but the absence of selective pressure for photostability in such screens leads to unpredictable photobleaching behavior in the resulting fluorescent proteins. Here we describe an assay for screening libraries of fluorescent proteins for enhanced photostability. With this assay, we developed highly photostable variants of mOrange (a wavelength-shifted monomeric derivative of DsRed from Discosoma sp.) and TagRFP (a monomeric derivative of eqFP578 from Entacmaea quadricolor) that maintain most of the beneficial qualities of the original proteins and perform as reliably as Aequorea victoria GFP derivatives in fusion constructs.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                12 November 2013
                27 May 2012
                19 March 2014
                : 15
                : 7
                : 1047-1053
                Affiliations
                [1 ]Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Dr., Stanford, CA 94305, USA
                [2 ]NYU Neuroscience Institute and Department of Physiology and Neuroscience, New York University, New York, NY 10016, USA
                Author notes
                Corresponding Authors: Dr. Yulong Li ( yulong@ 123456gmail.com ), Phone (650) 736-1610; Fax (650)-725-8021; Dr. Richard W. Tsien ( richard.tsien@ 123456nyumc.org ), Phone (646) 501-4520
                Article
                NIHMS375042
                10.1038/nn.3126
                3959862
                22634730
                e7667d1a-10d7-432a-bdda-cc84b5da9336

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Neurosciences
                transmitter release,exocytosis,phtomato,fluorescent protein,ph indicator,optogenetics,calcium,neuronal activity

                Comments

                Comment on this article