9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To minimize environmental pharmaceutical micropollutants, treatment of human urine could be an efficient approach due to the high pharmaceutical concentration and toxic potential excreted in urine. This study investigated the degradation kinetics and mechanisms of sulfamethoxazole (SMX), trimethoprim (TMP) and N4-acetyl-sulfamethoxazole (acetyl-SMX) in synthetic fresh and hydrolyzed human urines by low-pressure UV, and UV combined with H2O2 and peroxydisulfate (PDS). The objective was to compare the two advanced oxidation processes (AOPs) and assess the impact of urine matrices. All three compounds reacted quickly in the AOPs, exhibiting rate constants of (6.09-8.53) × 10(9) M(-1)·s(-1) with hydroxyl radical, and (2.35-16.1) × 10(9) M(-1)·s(-1) with sulfate radical. In fresh urine matrix, the pharmaceuticals' indirect photolysis was significantly suppressed by the scavenging effect of urine citrate and urea. In hydrolyzed urine matrix, the indirect photolysis was strongly affected by inorganic urine constituents. Chloride had no apparent impact on UV/H2O2, but significantly raised the hydroxyl radical concentration in UV/PDS. Carbonate species reacted with hydroxyl or sulfate radical to generate carbonate radical, which degraded SMX and TMP, primarily due to the presence of aromatic amino group(s) (k = 2.68 × 10(8) and 3.45 × 10(7) M(-1)·s(-1)) but reacted slowly with acetyl-SMX. Ammonia reacted with hydroxyl or sulfate radical to generate reactive nitrogen species that could react appreciably only with SMX. Kinetic simulation of radical concentrations, along with products analysis, helped elucidate the major reactive species in the pharmaceuticals' degradation. Overall, the AOPs' performance was higher in the hydrolyzed urine than fresh urine matrix with UV/PDS better than UV/H2O2, and varied significantly depending on pharmaceutical's structure.

          Related collections

          Author and article information

          Journal
          Environ. Sci. Technol.
          Environmental science & technology
          American Chemical Society (ACS)
          1520-5851
          0013-936X
          Mar 03 2015
          : 49
          : 5
          Affiliations
          [1 ] School of Environmental Science and Engineering, Tianjin University , Tianjin 300072, China.
          Article
          10.1021/es504799n
          25625668
          e772a43a-7e4e-4ff2-b112-9a0ce1fabc2d
          History

          Comments

          Comment on this article