73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Korean Guidelines for the Appropriate Use of Cardiac CT

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of cardiac CT has provided a non-invasive alternative to echocardiography, exercise electrocardiogram, and invasive angiography and cardiac CT continues to develop at an exponential speed even now. The appropriate use of cardiac CT may lead to improvements in the medical performances of physicians and can reduce medical costs which eventually contribute to better public health. However, until now, there has been no guideline regarding the appropriate use of cardiac CT in Korea. We intend to provide guidelines for the appropriate use of cardiac CT in heart diseases based on scientific data. The purpose of this guideline is to assist clinicians and other health professionals in the use of cardiac CT for diagnosis and treatment of heart diseases, especially in patients at high risk or suspected of heart disease.

          Related collections

          Most cited references259

          • Record: found
          • Abstract: found
          • Article: not found

          Coronary calcium as a predictor of coronary events in four racial or ethnic groups.

          In white populations, computed tomographic measurements of coronary-artery calcium predict coronary heart disease independently of traditional coronary risk factors. However, it is not known whether coronary-artery calcium predicts coronary heart disease in other racial or ethnic groups. We collected data on risk factors and performed scanning for coronary calcium in a population-based sample of 6722 men and women, of whom 38.6% were white, 27.6% were black, 21.9% were Hispanic, and 11.9% were Chinese. The study subjects had no clinical cardiovascular disease at entry and were followed for a median of 3.8 years. There were 162 coronary events, of which 89 were major events (myocardial infarction or death from coronary heart disease). In comparison with participants with no coronary calcium, the adjusted risk of a coronary event was increased by a factor of 7.73 among participants with coronary calcium scores between 101 and 300 and by a factor of 9.67 among participants with scores above 300 (P<0.001 for both comparisons). Among the four racial and ethnic groups, a doubling of the calcium score increased the risk of a major coronary event by 15 to 35% and the risk of any coronary event by 18 to 39%. The areas under the receiver-operating-characteristic curves for the prediction of both major coronary events and any coronary event were higher when the calcium score was added to the standard risk factors. The coronary calcium score is a strong predictor of incident coronary heart disease and provides predictive information beyond that provided by standard risk factors in four major racial and ethnic groups in the United States. No major differences among racial and ethnic groups in the predictive value of calcium scores were detected. Copyright 2008 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals.

            Guidelines advise that all adults undergo coronary heart disease (CHD) risk assessment to guide preventive treatment intensity. Although the Framingham Risk Score (FRS) is often recommended for this, it has been suggested that risk assessment may be improved by additional tests such as coronary artery calcium scoring (CACS). To determine whether CACS assessment combined with FRS in asymptomatic adults provides prognostic information superior to either method alone and whether the combined approach can more accurately guide primary preventive strategies in patients with CHD risk factors. Prospective observational population-based study, of 1461 asymptomatic adults with coronary risk factors. Participants with at least 1 coronary risk factor (>45 years) underwent computed tomography (CT) examination, were screened between 1990-1992, were contacted yearly for up to 8.5 years after CT scan, and were assessed for CHD. This analysis included 1312 participants with CACS results; excluded were 269 participants with diabetes and 14 participants with either missing data or had a coronary event before CACS was performed. Nonfatal myocardial infarction (MI) or CHD death. During a median of 7.0 years of follow-up, 84 patients experienced MI or CHD death; 70 patients died of any cause. There were 291 (28%) participants with an FRS of more than 20% and 221 (21%) with a CACS of more than 300. Compared with an FRS of less than 10%, an FRS of more than 20% predicted the risk of MI or CHD death (hazard ratio [HR], 14.3; 95% confidence interval [CI]; 2.0-104; P =.009). Compared with a CACS of zero, a CACS of more than 300 was predictive (HR, 3.9; 95% CI, 2.1-7.3; P<.001). Across categories of FRS, CACS was predictive of risk among patients with an FRS higher than 10% (P<.001) but not with an FRS less than 10%. These data support the hypothesis that high CACS can modify predicted risk obtained from FRS alone, especially among patients in the intermediate-risk category in whom clinical decision making is most uncertain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients.

              The purpose of this study was to develop risk-adjusted multivariable models that include risk factors and coronary artery calcium (CAC) scores measured with electron-beam tomography in asymptomatic patients for the prediction of all-cause mortality. Several smaller studies have documented the efficacy of CAC testing for assessment of cardiovascular risk. Larger studies with longer follow-up will lend strength to the hypothesis that CAC testing will improve outcomes, cost-effectiveness, and safety of primary prevention efforts. We used an observational outcome study of a cohort of 25,253 consecutive, asymptomatic individuals referred by their primary physician for CAC scanning to assess cardiovascular risk. Multivariable Cox proportional hazards models were developed to predict all-cause mortality. Risk-adjusted models incorporated traditional risk factors for coronary disease and CAC scores. The frequency of CAC scores was 44%, 14%, 20%, 13%, 6%, and 4% for scores of 0, 1 to 10, 11 to 100, 101 to 400, 401 to 1,000, and >1,000, respectively. During a mean follow-up of 6.8 +/- 3 years, the death rate was 2% (510 deaths). The CAC was an independent predictor of mortality in a multivariable model controlling for age, gender, ethnicity, and cardiac risk factors (model chi-square = 2,017, p 1,000, respectively (p 1,000 (p < 0.0001). This large observational data series shows that CAC provides independent incremental information in addition to traditional risk factors in the prediction of all-cause mortality.
                Bookmark

                Author and article information

                Journal
                Korean J Radiol
                Korean J Radiol
                KJR
                Korean Journal of Radiology
                The Korean Society of Radiology
                1229-6929
                2005-8330
                Mar-Apr 2015
                27 February 2015
                : 16
                : 2
                : 251-285
                Affiliations
                [1 ]Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Korea.
                [2 ]Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 152-703, Korea.
                [3 ]Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea.
                [4 ]Department of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 411-706, Korea.
                [5 ]Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea.
                Author notes
                Corresponding author: Hwan Seok Yong, MD, Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 152-703, Korea. Tel: (822) 2626-1342, Fax: (822) 863-9282, yhwanseok@ 123456naver.com
                Article
                10.3348/kjr.2015.16.2.251
                4347263
                25741189
                e7731017-11a6-4a6d-a2c0-db7e03dab8ab
                Copyright © 2015 The Korean Society of Radiology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 07 December 2014
                : 03 January 2015
                Funding
                Funded by: National Strategic Coordinating Center for Clinical Research
                Award ID: A 102065
                Categories
                Cardiovascular Imaging
                Review Article

                Radiology & Imaging
                guideline,appropriateness criteria,cardiac computed tomography
                Radiology & Imaging
                guideline, appropriateness criteria, cardiac computed tomography

                Comments

                Comment on this article