43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Liver Injury in Uncomplicated Malaria is an Overlooked Phenomenon: An Observational Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Translated abstract

          Background

          Liver injury is a known feature of severe malaria, but is only incidentally investigated in uncomplicated disease. In such cases, drug-induced hepatotoxicity is often thought to be the primary cause of the observed liver injury, and this can be a major concern in antimalaria drug development. We investigated liver function test (LFT) abnormalities in patients with imported uncomplicated malaria, and in Controlled Human Malaria Infection (CHMI) studies.

          Methods

          Clinical and laboratory data from 484 imported malaria cases and 254 CHMI participants were obtained from the Rotterdam Malaria Cohort database, and the Radboud University Medical Center database (between 2001 and 2017), respectively. Routine clinical LFTs, clinical profiles, parasite densities, hematological, and inflammation parameters were assessed in 217 patients with imported falciparum malaria upon admission, and from longitudinal data of 187 CHMI participants.

          Findings

          Upon admission, the proportion of patients with imported uncomplicated malaria and elevated liver enzymes was 128/186 (69%). In CHMI, 97/187 (52%) participants showed LFT abnormalities, including mild (64%, >1.0 ≤ 2.5× upper limit of normal (ULN)), moderate (20%, >2.5 ≤ 5.0xULN) or severe (16%, >5.0xULN). LFT abnormalities were primarily ALT/AST elevations and to a lesser extent γGT and ALP. LFT abnormalities peaked shortly after initiation of treatment, regardless of drug regimen, and returned to normal within three to six weeks. Positive associations were found with parasite burden and inflammatory parameters, including cumulative inflammatory cytokine responses and oxidative stress markers ( r = 0·65, p = 0·008, and r = −0·63, p = 0·001, respectively).

          Interpretation

          This study shows that reversible liver injury is a common feature of uncomplicated falciparum malaria, most likely caused by an enduring pro-inflammatory response post treatment. The recognition of this phenomenon is of clinical relevance for individual patient care as well as clinical development of (new) antimalarial drugs.

          Fund

          PATH Malaria Vaccine Initiative (MVI)

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity.

          Volunteers immunized under chloroquine chemoprophylaxis with Plasmodium falciparum sporozoites (CPS) develop complete, long-lasting protection against homologous sporozoite challenge. Chloroquine affects neither sporozoites nor liver-stages, but kills only asexual forms in erythrocytes once released from the liver into the circulation. Consequently, CPS immunization exposes the host to antigens from both preerythrocytic and blood stages, and induced immunity might target either of these stages. We therefore explored the life cycle stage specificity of CPS-induced protection. Twenty-five malaria-naïve volunteers were enrolled in a clinical trial, 15 of whom received CPS immunization. Five immunized subjects and five controls received a sporozoite challenge by mosquito bites, whereas nine immunized and five control subjects received an i.v. challenge with P. falciparum-infected erythrocytes. The latter approach completely bypasses preerythrocytic stages, enabling a direct comparison of protection against either life cycle stage. CPS-immunized subjects (13 of 14) developed anticircumsporozoite antibodies, whereas only one volunteer generated minimal titers against typical blood-stage antigens. IgG from CPS-immunized volunteers did not inhibit asexual blood-stage growth in vitro. All CPS-immunized subjects (5 of 5) were protected against sporozoite challenge. In contrast, nine of nine CPS-immunized subjects developed parasitemia after blood-stage challenge, with identical prepatent periods and blood-stage multiplication rates compared with controls. Intravenously challenged CPS-immunized subjects showed earlier fever and increased plasma concentrations of inflammatory markers D-dimer, IFN-γ, and monokine induced by IFN-γ than i.v. challenged controls. The complete lack of protection against blood-stage challenge indicates that CPS-induced protection is mediated by immunity against preerythrocytic stages. However, evidence is presented for immune recognition of P. falciparum-infected erythrocytes, suggesting memory responses unable to generate functional immunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria.

            Sequestration of malaria-infected erythrocytes in the peripheral circulation has been associated with the virulence of Plasmodium falciparum. Defining the adhesive phenotypes of infected erythrocytes may therefore help us to understand how severe disease is caused and how to prevent or treat it. We have previously shown that malaria-infected erythrocytes may form apparent autoagglutinates of infected erythrocytes. Here we show that such autoagglutination of a laboratory line of P. falciparum is mediated by platelets and that the formation of clumps of infected erythrocytes and platelets requires expression of the platelet surface glycoprotein CD36. Platelet-dependent clumping is a distinct adhesive phenotype, expressed by some but not all CD36-binding parasite lines, and is common in field isolates of P. falciparum. Finally, we have established that platelet-mediated clumping is strongly associated with severe malaria. Precise definition of the molecular basis of this intriguing adhesive phenotype may help to elucidate the complex pathophysiology of malaria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Human malarial disease: a consequence of inflammatory cytokine release

              Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                EBioMedicine
                EBioMedicine
                EBioMedicine
                Elsevier
                2352-3964
                19 September 2018
                October 2018
                19 September 2018
                : 36
                : 131-139
                Affiliations
                [a ]Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
                [b ]Harbour Hospital, Institute for Tropical Diseases, Rotterdam, the Netherlands
                [c ]Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
                [d ]Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, the Netherlands
                [e ]Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands.
                Author notes
                Article
                S2352-3964(18)30375-X
                10.1016/j.ebiom.2018.09.018
                6197763
                30243492
                e7812366-79ac-4051-973b-28eabc240e27
                © 2018 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 20 July 2018
                : 29 August 2018
                : 11 September 2018
                Categories
                Research paper

                malaria,liver injury,pathogenesis,inflammation,oxidative stress

                Comments

                Comment on this article

                scite_

                Similar content42

                Cited by26

                Most referenced authors659