25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Innate lymphoid cells (ILCs) are emerging as a family of effectors and regulators of innate immunity and tissue remodeling. Interleukin 22 (IL-22)- and IL-17-producing ILCs, which depend on the transcription factor RORγt, express CD127 (IL-7 receptor α-chain) and the natural killer cell marker CD161. Here we describe another lineage-negative CD127(+)CD161(+) ILC population found in humans that expressed the chemoattractant receptor CRTH2. These cells responded in vitro to IL-2 plus IL-25 and IL-33 by producing IL-13. CRTH2(+) ILCs were present in fetal and adult lung and gut. In fetal gut, these cells expressed IL-13 but not IL-17 or IL-22. There was enrichment for CRTH2(+) ILCs in nasal polyps of chronic rhinosinusitis, a typical type 2 inflammatory disease. Our data identify a unique type of human ILC that provides an innate source of T helper type 2 (T(H)2) cytokines.

          Related collections

          Most cited references 13

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution.

          Ulcerative colitis (UC) is characterized by a Th2 immune response with inflammation and epithelial barrier dysfunction. So far, Th2 cytokines have not been shown to directly influence epithelial barrier function. Lamina propria mononuclear cells (LPMCs) were stimulated and interleukin (IL)-13 was measured by enzyme-linked immunosorbent assay. Functional IL-13 and IL-4 effects were studied on HT-29/B6 colonic epithelial cells in Ussing chambers and by conductance scanning. Apoptosis was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays. IL-13/IL-4 receptors were analyzed by reverse-transcription polymerase chain reaction and immunofluorescence. Western blotting combined with immunofluorescence was used to detect tight junction proteins. Furthermore, restitution velocity was measured. Finally, mucosal biopsy specimens from patients with UC were compared with cultured cells for these features. LPMCs from patients with UC produced large amounts of IL-13 (985 +/- 73 pg/mL), much more than from controls or patients with Crohn's disease. IL-13Ralpha1 and IL-4Ralpha receptors were present in HT-29/B6 cells and colonic epithelial cells of control patients and patients with UC. IL-13 had a dose-dependent effect on transepithelial resistance of HT-29/B6 monolayers (reduction to 60% +/- 4%), whereas IL-4 had no effect. This was due to an increased number of apoptotic cells (5.6-fold +/- 0.9-fold) and an increased expression of the pore-forming tight junction protein claudin-2 to 295% +/- 37%, both of which contributed equally. Finally, epithelial restitution velocity decreased from 15.1 +/- 0.6 to 10.6 +/- 0.5 microm/h after treatment with IL-13. Parallel changes were observed in human samples, with an increase in claudin-2 expression to 956% +/- 252%. IL-13 was identified as an important effector cytokine in UC that impairs epithelial barrier function by affecting epithelial apoptosis, tight junctions, and restitution velocity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut.

            Fetal CD4(+) lymphoid tissue inducer (LTi) cells play a critical role in the development of lymphoid tissues. Recent studies identified that LTi cells persist in adults and are related to a heterogeneous population of innate lymphoid cells that have been implicated in inflammatory responses. However, whether LTi cells contribute to protective immunity remains poorly defined. We demonstrate that after infection with Citrobacter rodentium, CD4(+) LTi cells were a dominant source of interleukin-22 (IL-22) early during infection. Infection-induced CD4(+) LTi cell responses were IL-23 dependent, and ablation of IL-23 impaired innate immunity. Further, depletion of CD4(+) LTi cells abrogated infection-induced expression of IL-22 and antimicrobial peptides, resulting in exacerbated host mortality. LTi cells were also found to be essential for host protective immunity in lymphocyte-replete hosts. Collectively these data demonstrate that adult CD4(+) LTi cells are a critical source of IL-22 and identify a previously unrecognized function for CD4(+) LTi cells in promoting innate immunity in the intestine. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone.

              The generation of lymphoid microenvironments in early life depends on the interaction of lymphoid tissue-inducer cells with stromal lymphoid tissue-organizer cells. Whether this cellular interface stays operational in adult secondary lymphoid organs has remained elusive. We show here that during acute infection with lymphocytic choriomeningitis virus, antiviral cytotoxic T cells destroyed infected T cell zone stromal cells, which led to profound disruption of secondary lymphoid organ integrity. Furthermore, the ability of the host to respond to secondary antigens was lost. Restoration of the lymphoid microanatomy was dependent on the proliferative accumulation of lymphoid tissue-inducer cells in secondary lymphoid organs during the acute phase of infection and lymphotoxin alpha(1)beta(2) signaling. Thus, crosstalk between lymphoid tissue-inducer cells and stromal cells is reactivated in adults to maintain secondary lymphoid organ integrity and thereby contributes to the preservation of immunocompetence.
                Bookmark

                Author and article information

                Journal
                Nature Immunology
                Nat Immunol
                Springer Science and Business Media LLC
                1529-2908
                1529-2916
                November 2011
                September 11 2011
                November 2011
                : 12
                : 11
                : 1055-1062
                Article
                10.1038/ni.2104
                21909091
                © 2011

                Comments

                Comment on this article