17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae.

      Journal of Cell Science
      Autophagy, physiology, Phagosomes, genetics, metabolism, Phosphatidylinositol 3-Kinases, Saccharomyces cerevisiae, cytology, Saccharomyces cerevisiae Proteins

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy is a bulk degradation system mediated by biogenesis of autophagosomes under starvation conditions. In Saccharomyces cerevisiae, a membrane sac called the isolation membrane (IM) is generated from the pre-autophagosomal structure (PAS); ultimately, the IM expands to become a mature autophagosome. Eighteen autophagy-related (Atg) proteins are engaged in autophagosome formation at the PAS. However, the cup-shaped IM was visualized just as a dot by fluorescence microscopy, posing a challenge to further understanding the detailed functions of Atg proteins during IM expansion. In this study, we visualized expanding IMs as cup-shaped structures using fluorescence microscopy by enlarging a selective cargo of autophagosomes, and finely mapped the localizations of Atg proteins. The PAS scaffold proteins (Atg13 and Atg17) and phosphatidylinositol 3-kinase complex I were localized to a position at the junction between the IM and the vacuolar membrane, termed the vacuole-IM contact site (VICS). By contrast, Atg1, Atg8 and the Atg16-Atg12-Atg5 complex were present at both the VICS and the cup-shaped IM. We designate this localization the 'IM' pattern. The Atg2-Atg18 complex and Atg9 localized to the edge of the IM, appearing as two or three dots, in close proximity to the endoplasmic reticulum exit sites. Thus, we designate these dots as the 'IM edge' pattern. These data suggest that Atg proteins play individual roles at spatially distinct locations during IM expansion. These findings will facilitate detailed investigations of the function of each Atg protein during autophagosome formation.

          Related collections

          Author and article information

          Comments

          Comment on this article